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I. INTRODUCTION

Motivation

Owing to their favorable performance characteristics, composite

materials have been gaining wide use in commercial, military and

spacecraft applications. Typical commercial applications include

building materials, sports equipment, and automobile parts such as

drive shafts, engines, leaf springs and wheels. The main applications

of composite materials, however, have been in the aerospace and

defense related projects. Aircraft and spacecraft structures are

typically weight-sensitive and advanced composites with high strength-

to-weight and stiffness-to-weight ratios have become almost

indispensable in such structures.

Spacecraft structures and equipment mounted in these structures

are required to operate in hostile environments and to be subjected to

a wide range of dynamic loads. When structural resonances are

excited, the dynamic loads can produce excessive vibration in the

structures and equipment. There is a need for the vibration of the

structures to decay as quickly as possible so that it will not affect

the normal working and utility of the structures and missions.

Vibration can be significantly reduced by increasing the damping in

the dominant modes through the application of active and passive

damping control devices.
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Active control can be used to suppress the vibration by the use

of certain active elements such as actuators which alter the dynamic

response of the structure. It requires the use of special purpose

hardware, and real-time control-design algorithms applicable to

individual structural components. Active vibration control technology

Is still in its primitlve stages of development and unfortunately,

feasible solutions are still not available to alleviate the vibration

problems of real-life complex space structures.

In passive control, energy dissipation can be achieved by

external add-on damping devices such as isolators or constrained

viscoelastic layers. Yet another source of passive damping in most

structures is provided by their joints and supports. The use of

passive damping treatments provides a simple and reliable solution for

vibration suppression, in limited frequency ranges. A balanced

combination of both active and passive damping is, however,- likely to

be a more realistic and practical solution in future aerospace

structures than the use of active or passive control alone.

In any case, a detailed understanding of the inherent damping in

the material and the structural system is important. Little

information is available on material damping, especially for advanced

composite materials. It is difficult to obtain a good understanding

of the damping phenomena in a material or structure as there are many

mechanisms involved. All these mechanisms eventually involve the

conversion of mechanical energy into thermal energy. For composite

materials, the damping mechanisms, of course, are more complex because

several factors will influence the damping capacity of the material.
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These include, but are not limited to: !) internal friction or

hysteresis within each of the constituent materials, 2) interfacial

slip at the fiber-matrix interfaces, and 3) fiber orientation and

length. Hence damping cannot be estimated easily, but instead must be

measured.

The influences of common environmental factors such as moisture

and temperature have been found significantly to degrade the matrix

dominated mechanical properties of many polymer composites. When

moisture is absorbed, the composite gets heavier and the resin matrix

expands. Matrix swelling and rapid heating may eventually lead to

surface cracking. The amount and type of degradation that this can

cause in the mechanical properties of the composite depend on matrix

material, fiber content and orientation, cure quality, service

temperature, humidity, duration of exposure and geometry of the

component. Hence, it is extremely difficult to make t-heoretical

predictions regarding the effects of the above environmental factors

on the mechanical properties, particularly the damping capacity of

composite materials.

Joints are used in deployable structures as well as in structures

which must be assembled in space. Unlike metals, fiber composites

cannot be welded together. The alternatives include the use of

mechanical fasteners, such as bolts and rivets, or adhesive bonding.

These techniques produce joints with vastly different properties.

Adhesive bonding is preferred over conventional fastening techniques

due to a greater uniformity in load distribution, elimination of drill

holes, reduced weight and increased processing ease.
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It is believed that bonded (and bolted) Joints act to enhance the

damping capacity of the structure. The energy dissipation in a Joint,

however, is a complicated process involving several mechanisms. The

characterization of a joint presents many experimental and analytical

challenges. Because of the complexity of the problem it appears that

very little work is being done in evaluating the damping in joints and

built-up structures. Hence there is a considerable need for the

contribution of knowledge in the understanding of the damping capacity

of joints.

Scope of the Study

The Hubble Space Telescope, which will be placed in orbit by NASA

in 1989, is a new telescope which will be able to peer far out in

space and back into time, producing images of unprecedented clarity of

galaxies, planets and stars billions of light years away from the

earth. The Space Telescope requires precise pointing accuracy and its

optical system is held together by a truss made of graphite epoxy

composite material. Graphite epoxy is a strong, lightweight composite

material, developed by NASA in the early 1970s, that expands and

contracts very little in response to temperature changes. The

metering truss is 5.3 m long and 2.9 m in diameter and has a mass of

only 114 kg[1].

The pointing control system of the telescope consists mainly of

optical sensors, a digital computer, gyros and four massive reaction

wheels. Pointing torques are applied with the reaction wheel

assemblies. The reaction wheels produce vibration disturbances when
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they are rotated due to imbalance of the rotor and imperfections in

the spin bearings. The vibration disturbances could excite the system

resonances which would lead to significant truss system displacement

amplitudes. These would result in the blurring of the optical system

image of the space telescope. Vibration suppression of the truss

system is provided by passive isolation systems in the form of viscous

dashpots[2]. A specific knowledge of the material and system damping

of the truss system is mandatory in the design of the passive

isolation systems. Hence one of the main objectives of the present

research was to evaluate systematically, the damping capacity of the

graphite epoxy material of the telescope truss system. Furthermore,

since the telescope will operate in space, it is necessary to

determine the damping capacity of these materials in a simulated space

environment.

When graphite epoxy materials are used in a vacuum environment,

they have a tendency to outgas. During outgassing they release all

the gases and moisture which were trapped during manufacture. There

is some concern, however, that mechanical properties including its

material damping may change after the material has outgassed for long

periods of time. For graphite epoxy materials, this outgassing can

take a period of about six months but this period may be reduced to

about 3-4 weeks by heating the material to about 100°C in a vacuum

chamber.

The telescope is expected to experience variations in temperature

of as much as 140°C in space[3]. As mentioned previously, the damping

capacity of graphite epoxy material_ is considerably influenced by
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the variation in temperature. Though it is known that temperature

affects the damping capacity of these materials, not much work has

been done on the behavior of these materials in cryogenic

temperatures. Such temperatures may be important during launching and

deployment in space.

The truss system of the telescope is a joint-dominated structure.

As discussed earlier, the damping provided by joints is a potential

source of passive damping which is useful for the suppression of

vibration in the truss system. It is not known, however, whether the

bonded joints in the truss will significantly increase the damping

over the material damping. Analytical and experimental work on the

evaluation of system damping of basic structural joints is a good

starting point for research in this area. The data derived from

simple structures will provide some necessary information which can be

Used to gain an understanding of the dynamic behavior of complex

structures such as the truss system of the telescope.

The other objectives of the present study include, i) a study of

the effects of outgassing (moisture desorption), and temperature (both

high and low) on the damping capacity of the graphite epoxy composite

material of the truss system, and b) an analytical and experimental

evaluation of the damping capacity of simple adhesively bonded

structural joints.

RReport Outl ine

This report contains the results of the present

investigation into the above-mentioned objectives. The project work

V
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was performed in the Sound and Vibration Laboratory of the Mechanical

Engineering Department at Auburn University. The report is divided

into seven major chapters. A general overview of damping-- its

characterization, and some mathematical models is presented in chapter

2. The various experimental and estimation techniques for the

evaluation of damping are included in the same chapter. The advantages

and disadvantages of each method are discussed. An improved forced

vibration method developed during the course of the project is

expl ained.

Chapter 3 covers the previous pertinent work on the evaluation of

damping of composite materials. Work on the effects of moisture

absorption and desorptlon, and temperature on the dynamic properties

of composites is also reviewed. Recent developments in the study of

dynamics of structural Joints is also discussed.

Chapter 4 deals with the measurement of the damping of graphite

epoxy material. It details the methodology and results of the damping
i

measurements made on graphite epoxy tube and beam specimens under

normal atmospheric conditions and in a vacuum. Experimental findings

regarding the influence of moisture desorption and temperature (both

high and low) on the damping capacity of the material are also

discussed.

Chapter 5 is devoted to the study of damping of bonded structural

joints. An analytical model has been developed to predict the natural

frequencies, loss factors, and mode shapes of a bonded lap joint for

free flexural vibration. The mathematical details, solution scheme,

and numerical results are presented. Numerical results are compared



v with the experimental results obtained on graphite epoxy lap-Jointed

specimens. Some experimental results on the damping of

graphite epoxy double-butt-jointed specimens are described in the same

chapter. A summary of the project results, conclusions drawn, and some

recommendations for future work are presented in chapters 6, 7 and 8.

V

v

v
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11. DAMPING OVERVIEW

The term damping refers to any form of energy dissipation from a

vibrating system. There are two main kinds of damping: 1) material

damping and 2) system or structural damping. Material damping is the

damping inherent in the material and is caused by a variety of

physical mechanisms which depend on the material. System damping is

due to energy dissipation in the total structure, i.e. in addition to

the damping present in the material, it includes several non-material

damping mechanisms such as, energy dissipation effects at joints,

"fasteners, and interfaces, acoustic radiation damping, and coulomb or

dry friction damping, etc. A knowledge of the damping property of a

structure is of primary importance in controlling its resonant

response, and thus in prolonging its service life. Damping-also plays

a crucial role in the proper design of the system for vibratory

loadings.

Characterization of Damping.

A number of different units and notations have been proposed to

express the damping parameter. The variety of combinations of energy

dissipation mechanisms, the wide range of materials and testing

techniques, the effects of Joints and interfaces, and various

different motivations for damping studies have led to different

viewpoints towards damping and different mathematical models for its
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characterization[4-10]. Many different disciplines have been

concerned with the damping research and each discipline, it appears,

has its own favorite nomenclature. It is therefore essential to

review at least some of the important damping representations in

current use and to indicate the relationships between them.

Absolute Energy Units

In terms of the absolute energy units, which are applicable to

both linear and non-linear materials, the damping energy dissipated in

the specimen in a cycle per unit volume (Udv) is a measure of the

material damping. Thus the total damping energy UD, is

UD = IV UdvdV , (2.1)

The usual unit of UD is joule/cycle and ofwhere V is the volume.

Udv, Joul e/cm_ -cycl e.

The absolute energy dissipation is difficult to measure, in

practice, in most cases. Hence relative energy units are more

popular.

Relative Energy Units

Relative Energy Units, also applicable to both linear and non-

linear materials are dimensionless ratios of damping energy to strain

energy. Four different forms of relative units appear in the

literature:

1) The loss factor _ is defined as the ratio of energy dissipated in

a cycle to the maximum energy stored during that cycle. For a simple
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harmonic excitation, f(t) = F sin wt, the response can be described as

x(t) = X sin (wt + ib),where _ is the phase angle between the force

and the displacement. The energy dissipated D is equal to the work

done in that cycle:

D = F2_IW f(t) _ dt (2.2)
dt

0

: _ X F sini_.

The strain energy U in the system is nothing but the energy supplied

to the system, which is given by,

i FXcos (2.3)U : /Tf(t) x(t) : 2 "
0

Therefore, from Equations (2.2) and (2.3), the loss factor is given by

D = tan_. (2.4): 2_

2) The quality factor q which is defined as the reciprocal of the

loss factor _ is also sometimes used as a measure of damping,

Q : !. (2.5)

3) A most popular representation of damping is the Damping Ratio (_-).

It is the dimensionless ratio associated with a resonance frequency

(modal frequency) and is defined by

c (2.6)
_ = C--c '

where c is the viscous damping coefficient and c c is the critical

damping coefficient, for which the system will cease to oscillate when

displaced from rest and released. The damping ratio &-, often
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expressed as a percentage gives a quick visualization of the damping

present in the system. Values of _ <I suggest that it is an

underdamped system, _ = I represents a critically damped system,

and &- > 1 represents an over-damped system. Throughout this report,

the percent critical damping ratio _ is adapted as the measure of

damping.

4) Complex Modulus apj_roach - In many polymer and composite

materials, the Young's modulus(E) can be treated as a complex

quantity, since there will be a phase difference between the stress

and strain[lO]. In this approach, we define the following relationship

between stress _ and strain E:

a = E_ + aE _-CC
_t

, (2.7)

where E is the Young's modulus and a is a constant. Assuming a time

dependance of the form, e iWt, we can write, a = _o eiWt, and-

E = _o eiWt. Then Equation (2.7) becomes

0 o = E (1 + iwa) %. (2.7a)

In Equation (2.7a), the term E (I + iwa) can be treated as a complex

modulus of the material, which is written in a more convenient

form,

E : E' + i E", (2.7b)

where E' = E, the real part is called the 'storage modulus', and E" =

waE, the imaginary part is called the 'loss modulus' The tangent of
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the phase angle between the stress and strain is defined as loss

tangent or loss factor.

li

tan_ : _ = _T (2.8)

All of the above relative energy unit representations of damping are,

however, related to one another by:

1 (2.9)
= tan_ = 2_ = _ .

It should be noted that Equation (2.9) is valid for the damping

measured at a resonance frequency and it is assumed that S_<<l (lightly

damped systems).
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Experimental Methods for Damping Measurement

There are several methods available for measuring the material

damping or damping in general. The choice of the technique to be used

depends on several factors such as whether the material has a small or

large value of modulus of elasticity, a small or large value of

damping, the frequency range of interest, temperature, stress state,

size and shape of the specimen, specimen configuration and excitation,

available instrumentation, etc. Comprehensive reviews of the basic

experimental techniques, along with their relative merits and

demerits, have been published by Plunkett [11], Bert and Clary [12],

and ¢hu and Wang [13]. The different methods for the estimation of

the damping ratio can be broadly classified as:

1)

2)

3)

materials.

Time domain methods,

Frequency domain methods, and

Other special methods developed for testing viscoelastic

Time Domain Methods

As the name implies, the system response data in the time domain

are utilized in these methods for the estimation of the modal damping

ratio. There are two such methods: a) Logarithmic decrement method,

and b) Impulse response method. These are described in the following

sections.
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Logarithmic Decrement Method

This is also called the free-vibration decay method. This is one

of the oldest techniques used for the estimation of the damping ratio.

In this method, the free vibration decay (displacement amplitude

history) of a system to a transient input (an impulse) is measured by

a transducer and recorded by a recorder. From this decay curve, the

logarithmic decrement 6, which is related to the damping ratio of the

system is calculated. The theory behind this simple method is briefly

outlined here. For a single degree of freedom system (Figure I (a))

the time response of the system due to a transient input can be

expressed as

y(t) : A e-EWn t sin(wdt + _), (2.10)

where, A is a constant defined by the initial conditions, &-= damping

ratio, wn : undamped natural frequency, wd = damped natural frequency,

= phase angle, and t = time. Equation (2.10) represents a decaying

sinusoidal motion (Figure 1 (b)) and provided _ is small, Wd__ wn and

if the sine term in Equation (2.10) is unity at some time to, then it

will again be unity at times, t N = t o + 2F.N/w d n t o + 2_N/Wn, where N

is an integer number, N = 1,2,3 .... Thus, by examining Equation

(2.10), we see that,

Y(t o)

y--_N) : eN(2_E) " (2.11)

By taking natural logarithms, we obtain the logarithmic decrement 6

as"
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Illustration of the Logarithmic Decrement Method
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Y(t o)

(2.12)

Use of Equation (2.12) provides a convenient way of measuring the

damping ratio E. In this method, the specimen is clamped in a

cantilever position, then "plucked" and allowed to vibrate freely.

The decaying motion may be measured by strain gauges, accelerometers

or optical sensors. Crawley and his co-workers [14,15] have utilized

strain gages to test their specimen in free-fall in a simulated space

environment. This was done to avoid the extraneous energy losses due

to supports and acoustic radiation.

If the system has many resonances, this approach can stil! be

used. One way is to use a band-pass filter to filter out the

undesired frequency content of the signal prior to displaying the

signal in the time domain on the recording systeni. An alternative

method is to 'tune' the desired mode of vibration by attaching several

shakers to the system and by using force appropriationtechniques

described by Asher [16]. When the system is vibrating in a desired

mode, the shakers are simultaneously cut-off, and the resulting decay

for that mode is measured and the damping ratio is calculated by using

Equation (2.12). This approach, however, requires elaborate

•instrumentation and hence has been used only for testing large

aircraft structures.

In the logarithmic decrement method, it is assumed that the

damping ratio is independent of the displacement amplitude. A

modification of the decay method can be used very easily by passing
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the time response through a log amplifier. The decay curve will then

be a straight line and the slope of this line is a measure of the

damping [Figure I(c)]. An alternative approach is to use a least-

squares curve-fitting procedure for the measured decay curve to obtain

an accurate estimate of the damping ratio. The theory behind this

curve-fitting method is given in [17]. A computer simulation was

carried out in reference [17] in order to compare the decay method

with the least squares curve-fitting method for the estimation of the

damping ratio. It was shown that the curve-fitting method is more

accurate than the decay method for the conditions most frequently

encountered in practice. The optimum number of data points for which

the best estimate of the damping ratio is obtained was found to be

about twenty.

Some other methods of measurement associated with the decay of

free vibration of mechanical systems have been noted in the

literature[4,18]. One such approach is the use of the time-averaged,

squared response y2 in decibels. If we define the displacement level

Ly to be:

Ly = 10 lOglo(Y 2/y2ref) ' dB (2.13)

where, y is the displacement amplitude and Yref is a reference

displacement amplitude, then it is easy to show, by substituting for y

from Equation (2.10), that,

'-d

-dd-_tL= _ [20 Loglo (Ae-&'Wnt/Yref)], (2.14)
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and the Decay rate At is given by:

At = _t L = - [20 Log10(e) ] [-&-Wn] = 8.69_-wn . (2.15)

Another way of estimating the damping ratio of a system is to

measure the reverberation time of the vibration decay in the system.

The reverberation time TR is defined as the time in which the

displacement level is reduced by 60 dB. It is seen from Equation

(2.15) that this value is given by:

TR : 6.90/&-wn = 1.10/s_fn. (2.16)

(This is easily shown by letting dt = T R and dLy = -60 dB, and _n =

2_f n in Equation (2.15).)

_mpulse Response Method

This method is essentially a forced vibration method. With the

advent of modern digital FFT analyzers, it is now possibleLto obtain

the frequency response of a system to any physically realizable

excitation, and the data can be processed either in the time domain or

in the frequency domain within a fraction of a second. The frequency

response H(_) of a system is the ratio of system response to an input

excitation in the frequency domain. The impulse response h(t) is the

time domain equivalent of the frequency response. It can be obtained

very easily by an inverse Fourier transformation of the frequency

response function (FRF).

A typical experimental set-up for measuring the impulse response

function is shown in Figure 2. For a single degree of freedom system,
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the unit impulse response (i.e. the system's response to a unit force)

is identical to that of Equation (2.10) and it can be easily

recognized that the exponential decay is also a straight llne when the

displacement amplitude is plotted on a logarithmic scale. Hence, the

techniques described in the previous section can be used to estimate

the damping ratio. The decay rate method discussed previously is most

commonly used in conjunction with the impulse response method.

For a multi-degree of freedom system, the impulse response

function is more complicated. It can be written in terms of the modal

parameters as [19,20]:

n

h(t): Z
i=i

where, n = number of modes

Ri= residue,

ai= angle of residue,

i-i= modal damping ratio, and

wi= modal frequency.

IRile-i'iwit sin(wit + ai) , (2.17)

The subscript i stands for the ith mode of vibration. The residue Ri

is related to the mode shape of the ith mode. Brown et al. [20] have

described a curve-fitting technique called the complex-exponential

algorithm, to extract the modal damping ratios and other modal

parameters from the measured impulse response data using Equation

(2.17). This technique has the disadvantage that it requires very

elaborate data reduction equlpment and generally gives an
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overestimation of the damping values because of the damping induced by

the exponential window in the FFT analyzer. This method is, however,

the only powerful technique available for measuring the damping ratio

of systems with very high modal density and modal interference. Many

commercial modal analysis software packages have incorporated this

technique as one of the standard curve-fitting routines for extracting

the modal parameters.

W

-4
v

V

Frequency Domain Methods

Several techniques are available for estimating the damping from

the system response data in the frequency domain. Usually, in all

these methods, a simple single degree of freedom system model with

either a viscous or a hysteretic type of damping is assumed. A

detailed description of viscous and hysteretic damping models can be
%

found in [10]. The following is a broad classification of the

frequency domain techniques for the estimation of the dampin-g ratio:

1) Resonant forced vibration methods,

2) Non-resonant forced vibration methods and,

3) Input-power method.

Resonant Forced Vibration Methods

As in the time domain methods, the damping ratio is assumed to be

independent of the displacement amplitude, but dependent on the

resonance frequency of vibration.
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If the damped simple system in Figure I (a) is excited by a

simple harmonic force of amplitude I F I at angular frequency u : 2_f,

the frequency response function is given by[18]:

I _ I/K (2.18)= (K-M_:) + icw (l-r:) + i(2&-r)"

Here r = w/u n is the frequency ratio, and i = (-1) I/:. The ratio Y/F

is called the frequency response function (FRF) which in this case is

the receptance or the displacement admittance function. In practice,

transient, random, and sinusoidal excitations can all be used to

obtain the FRF function. When random excitation is used, the FRF is

estimated by power spectrum averaging. In this case the FRF is

defined as the ratio of the cross-spectrum between the force and the

displacement signals to the auto-spectrum of the force signal. The

random excitation technique Is normally used to obtain more accurate

results than the other excitation methods if noise Is pres#nt in the

measurement process. A survey of the different excitation techniques,

their relative merits and demerits for modal analysis of structures

can be found in references [21,22].

Equation (2.18) forms the basis for many of the damping

estimation methods as follows:

(a) Half-power Points Method

The magnitude of the receptance function of Equation (2.18) can

be expressed as:

mag = ((l-r:): + (2_r):) "
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Provided the damping is small, _<<1, which is the situation in most

engineering applications, then, when the forcing frequency w equals

the undamped natural frequency Wn, the displacement admittance is

nearly maximum. The dynamic magnification factor, DMF - I Y I / I F I

/ K for this situation when w = wn (resonance) is thus, DMF = I/2_ = Q

(where Q is the quality factor).

Defining the half-power points as the points at which

v

I Y I / I F I / K has fallen to ¢2 of its value at resonance (see

Figure 3(a), we obtain the two values of angular frequency Ul, and u2

for this to occur from

V

v

1 = 1 (2.20)

2_ _ {(1-r:) 2 + (2Er):} I/2 "

and assuming _<<I, we obtain from the quadratic solution:

wz _ = 1 ± (2.21)r_ 2 = .__z_ _-

Thus, the damping ratio 5" can be obtained from the half power

bandwidth AN = w2-w I as

V

W 2 - WI

: 2_n . (2.22)

Thus, by determining the two frequencies w_ and w:, at which the

response is I/¢2 of the value at the resonance frequency Wn, the

damping ratio _ can quickly be determined using Equation (2.22). The

amplitude ratio of 1/¢2 corresponds to reduction of amplitude measured

v
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in decibels of 20 Loglo(1H2) = -3 dB. Thus a measurement associated

with an amplitude ratio of 1/42 is frequently referred to a "3 dB

bandwidth." If the system has many higher resonance frequencies, then

the same procedure can still be used by measuring the half-power

bandwidth of each resonance peak in the curve. This approach can be

used provided that _ is not too large and that the resonance peaks are

fairly sharp and can be separated in the frequency domain.

V

v

IwJ

(b) Damping from Real and Imaginary Parts of Receptance (co-quad

plots)

The real and imaginary parts of Equation (2.!9) shown in Figure 3

(c) and 3 (d) are

(l_r2)2/K
Re( Y ) = -(1_r2)2 + (2_r)2 , and (2.23)

Y -2qr/K (2.24)Im ( ) = (i_r2)2 + (2gr)2. _-

The real part will be zero at a resonance (when r = I). The damping
i

ratio can be estimated from the relation:

: 2(w== + w1=)' (2.25)

where w_ and w: are the frequencies on each side of _n where the

magnitude of the real part reaches a maximum.

From the imaginary plot, the resonance is located at the point

where Ira(Y/F) has a peak. The half-power points correspond to

frequencies at which the quadrature response (imaginary part) has half
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of the maximum amplitudes. Thus Equation (2.22) can once again be used

for calculating the damping ratio.

v

v

(c) Damping Estimation from the Phase Angle Plot

Estimation of the damping ratio from the phase angle plot is well

described by Pendered and Bishop [23]. The equation for calculating

the phase angle is,

tan¢ = -_-r=) " (2.26)

A typical variation of the phase angle with frequency is shown in

Figure 3 (b). At a resonance, theoretically, the phase angle between

force and displacement should be -go °. The half-power points, A and B

correspond to phase angles of -450 and -135 c respectively, thus, the

damping ratio can be evaluated using Equation (2.22). In practice,

since it is often very difficult to measure the half power points from

the phase angle curve, an alternate approach has been suggested. This

involves a measure of the slope of the tangent to the curve at the

82_I0_2 : 0inflection point,

calculated from the relation:

The damping ratio can then be

I I

_= = " (2.27)
On(slope at tan) tan( _ )

ta : W n

Although the phase method has an advantage in the sense that, the

determination of the natural frequency does not depend on the accurate

location of a 'peak', it has not, however, been very popular, since,

even now in practice, it is very difficult accurately to measure the

phase angles.
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(d) Vector Diagram Method (Kennedy-Pancu Method)

This method was originally developed by Kennedy and Pancu [24].

If the complex receptance function of Equation (2.18) is plotted on an

Argand plane, which is a plot of real part vs. imaginary part on a x-y

coordinate system, the resulting curve would be a circle as shown in

Figure 4. In fact, this can be proved very easily by considering

Equations (2.23) and (2.24). By a simple mathematical manipulation,

it can be shown that

{Re(Y/F)} = + {Im(Y/F) + 1/(4_r)}= = I/(4&-r)= , (2.28)

which represents a circle with center at (0, I/(2_-r)), and having a

radius of I/(2_r). From the plot, Kennedy and Pancu noted that: I) at

resonance, the displacement vector lies on the imaginary axis and

hence, is 90 degrees out of phase with the applied force, 2) the

Change in arc length(s) along the curve per unit change in frequency

(ds/dw) is a maximum at resonance, and 3) the diameter of the circle

is inversely proportional to the damping ratio.
J

As in the phase angle method, here also two approaches are used

to estimate the damping ratio. One approach, of course, is to use the

half-power point Equation (2.22). The half-power point frequencies

can be determined readily from the Argand Plot by drawing a line

parallel to the real axis through the center of the circle; the points

of intersection of this line with the circle are the half power point

frequencies. These points also correspond to frequencies w1, and w: at

• 90 ° angle with respect to the damped natural frequency. The

resonance frequency is the point on the circle farthest from the real
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axls (where the imaginary part is zero). An alternate approach to

determine the resonance frequency is from arc length measurements; the

resonance frequency corresponds to a point of maximum rate of change

of arc length with frequency. A mathematical analysis for this is

presented in many references [25-28]. Alternatively, the damping

ratio, can be estimated by knowing the rate of change of phase with

frequency, evaluated at resonance (see Equation 2.27).

In applying the Kennedy-Pancu method, the normal procedure is to

fit the 'best circle' through the measured data points around a

resonance. This is called the 'circle fit' procedure. For a multi-

degree of freedom system, the complex receptance can be viewed as a

summation of the complex receptances of several single degree of

freedom systems as in Equation (2.18). A typical Kennedy-Pancu plot

for a two-degree of freedom system is shown in Figure 4 (b). It is

evident that there are two resonance frequencies because of the

presence of two circular arcs. The normal procedure for such systems

is to fit a circle to each of the loops separately as a single degree

of freedom system. Notice that the vector diagram of systems with

many degrees of freedom are not circles, but curves with many loops,

usually one for each resonance. Woodcock [29] has extended the

Kennedy-Pancu method to study systems with many degrees of freedom.

It is reported in the literature that the circle-fitting procedure

yields better estimates of modal parameters than the other methods in

the presence of closely spaced modes. But, the choice of data points

utilized in the circle fit gives different answers and the best answer

becomes a matter of judgement [20].
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The principal assumptions made in all the methods discussed so

far for the estimation of the damping ratio are: 1) the system is

linear, 2) the system possesses very light damping, and 3) the modes

of the system are well separated. Each method has its own advantages

and disadvantages. In general, most of the above methods have a major

drawback in that they just use two or three points on the response

curve for the estimation of the damping ratio. Hence, the accuracy of

the estimated damping ratio depends on how well the two or three data

points are chosen. In practice, it is usually difficult accurately to

locate the resonance frequency and the half-power points.

Furthermore, the frequency resolution of the analyzing instrument has

a restriction on the value of the damping ratio that can be estimated.

Hence, recognizing the need for a better method for damping ratio

estimation, the following improved forced vibration method has been

developed as a part of this research project.

Improved Resonant Forced-Vibration Method

The method consists of fitting a 'best curve' for the measured

receptance data using an iterative least-squares error criterion. The

damping ratio and the undamped natural frequency are then, computed

from the coefficients of the rational fraction polynomial determined

from the curve-fitting technique. Any of the three functions ofthe

receptance namely, the magnitude, the real part, or the imaginary part

can be used in the method. The theory behind this method is as

follows.
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The frequency response function used in the analysis is the

receptance function (displacement/force) of a single degree of freedom

system, obtained from a single point excitation. Either a random

input excitation (white noise) or a swept sine excitation can be used.

The receptance function can easily be measured in practice by an

impedance head and a dual channel signal analyzer. In the following

analysis, the equations of motion of a multi degree of freedom system

with proportional damping are used. These are chosen to illustrate the

fact that the method developed here can also be used for a system

response containing several distinct modes by fitting each of the

modes separately as a single degree of freedom system.

For a general multi-degree of freedom system with proportional

damping the equation of motion in matrix form Is:

Mx + R_( + Kx = P(t) , (2.29)

where, M = mass matrix, nxn,

R : damping matrix, nxn,

K = stiffness matrix, nxn,

, X, x = acceleration, velocity and displacement vector,

respectively, nxl,

P(t) = force vector, nxl,

n : number of degrees of freedom.

If the normal mode shape of the system without damping is [i_]nxn, then

applying the following transforms:

.°

x : [_]q, ;_ = [!_]Q, and x = [i_]q

and the orthogonality conditions:
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[!b]jTM[ib]i : O, [ib]iTM[_]i = MG.
#

[_]j TK[#]i = O, [_]iTK[_]i = KG'

where MG and KG represent the decoupled (diagonal) mass and stiffness

matrices of the system respectively. Pre-multiplying both sides of

Equation (2.29) with [i_] T and applying the above transforms the

following equation is obtained:

[i_]TM[_]q + [!_]TR[I_]Q + [i_]TK[_]q : [i_]Tp(t) . (2.30)

Assuming that the damping is viscous, and that the damping matrix is

proportional to mass matrix, r r =2&-rWnrMr, a diagonal matrix equation

from Equation (2.30) is obtained:

"" [\2ffr_nr \MGq + MG ]Q + KGq = PG(t) , (2.31)

where, PG(t) = [i_]Tp(t). If PG(t)= PGeiWt, then the steady state

solution of Equation (2.31) can be obtained as:

where,

Since

q = Qe iWt,

PGr

Qr 2 = I, 2 n
= MGr[Wnr+ i2_rWnrW _ w2], r , ....

x = [Ib]q = qo ei_t

n {!_r}T {p} {_r}

qo = Z 2
r=l MGr[Wnr + i2gr_nrW - w2]

(2.32)

v
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If only one force acts on the J-th point and the response is measured

at the same point, then the r-order driving point displacement

admittance is obtained as follows:

MDr = 2
MGr[Wnr + i2EWnr(# - w2]•

(2.33)

The magnitude, the real part and the imaginary part of the receptance

for the r-th mode are, respectively,

i_2r/(2_)4
: , (2.34)

IMD_2 4 _ f2 f2 + f4]
MGr[fnr + 2(_ 2 I) nr

i_2r 2 f2(fnr- )/(2_)2

Re(MDr) = 4 (2_2 - 1 2 2 ' (2.35)
MGr[fnr + 2 )fnr f + f4]

-2@2r E fnr f /(2_)2

Im(MDr) = 4 _ 2 f2+ f4]' (2.36)
MGr[fnr + 2(2_ 2 1)fnr

where, fnr is the excitation frequency, Hz. Equations (2.34)_ through

(2.36) can be expressed by rational functions:

A3

IMD_ 2 (2.37)= [A 1 + A2f2 + f4] ,

Re (MDr) =

A4 (A1)I/2-A4f2

AI + A2f2 + f4

(2.38)

Asf

Im(MDr) = f4 ' (2.39)
AI + A2f2 +

where, AI : f4 A2:2 (292-1) f2 A3= 2 (2_)4nr , nr ' _r / MGr ' (2.40)
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A4 : i_2r/ MGr(2_) 2, and A5 : -!_2r 2S--fnr/ MGr(21F)2.

From the coefficients A1 and A2, the natural frequency and the damping

1

ratio can be obtained:

1/4 (2.41)fn = A1 '

A2 [}1/2={! +I]

n

(2.42)

Using the measured data for the magnitude or the real part or the

imaginary part of the receptance and the frequencies in the range of

the bandwidth of the hal f-power points, these data can be fitted to

the corresponding equations given above. Using the magnitude with

Equation (2.37) for example, the curve-fitting procedure is as

follows:

2( ^Let y = IMD f) l, then the estimate of y is:

^ B1
y = ' _ (2.43)

I + B2f2 + B3_

A3 A2 1

where, B1 = _ , B2 = _11 ' and B3 : A-I"
Equation (2.43) can be

written as, BI - y (I + B2f2 + B3 f4) = 0 . The residual r is:

^ B2f2 B3f4r = y - y = BI - Y( + ) - y (2.44)

Y = r+y. For each experimental point, corresponding to a Yi - fi

pair, the residual is

4
ri : B1 - Yi(B2f_ + B3fi ) - Yi" (2.45)



36

The least-squares curve-fitting criterion requires that the sumS of

the squares of residuals for N points be a minimum, that is

N

N 2 __i[__1[B1_Yi 2 4S = Z r i (B2f + B3f ) - Yi ]2 : min. (2.46)
i=1

Setting the partial derivatives of Equation (2.46) with respect to the

coefficient B1, B2 and B3 to be zero, the matrix equation is obtained:

N -ZYif _ -_Yi f4

_yi f2 -ZY_ f_ -_Y_ f_

6 __y_ 8liYi fi4 -_Y_ fi fi

BII
I

B21:

_ _B3_]

m

SYi

rYi Yi f#

4
_Yi Yi fi

(2.47)

v Equation (2.47) can be solved for the constants, BI, B2 and B3 by an

iterative method. For the first iteration, it is assumed that

Yi=Yi 'then' Yi (L) = Yi + ri(L-1)' where L is the iteration time. Then

the calculations are repeated till the desired convergence #riterion

is obtained. After at most 10 iterations, the coefficients will

converge to an accuracy of about 10 -6 . Then the undamped natural

frequency and the damping ratio can then be obtained from Equations

(2.41) and (2.42) respectively. A computer program has been written

to carry out the iteration using all the three functions, namely the

magnitude, the real part and the imaginary part of the receptance

data.

The residual for Equation (2.43) can be defined in an

alternative form:
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ri : Yi(A1 + A2f2 + f4) _ A3 ' (2.48)

then the matrix equation for the least squares curve-fitting will be

simpler than Equation (2.47) and this procedure does not require any

iteration for its solution. Hence this is even a simpler method than

the iterative least square method suggested above. Similar expressions

can be developed using the real and imaginary parts of the receptance.

The major advantage of this method is that, the entire data near

a resonance are used for the estimation of the damping ratio, as

opposed to three points in the half-power points method. Thus, a more

accurate estimate of the damping ratio can be obtained. Furthermore,

the undamped natural frequency obtained from the least-squares

computation is used in the calculation of the damping ratio. Also,

this method is not limited to systems with small damping and the

frequency resolution of the analyzer does not influence the_ accuracy

of the method to some extent. Since this method uses fewer data near

a resonance as compared to other complex curve-fitting techniques

[30,31] a smaller memory is required in the computer and a higher

data-reduction speed can be achieved. This method has been used in

the present investigation for the measurement of the damping ratio of

the graphite epoxy composite material. Details of its application to

the present project are discussed in the forthcoming chapters. Some

results showing the comparison between the curve-fitting technique and

the half-power points method is included in Appendix A.

_bW

v
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Non-Resonant Forced Vibration Methods

This method has been mostly applied in the measurement of the

complex Young's modulus of polymers and viscoelastic materials. The

loss factor (2E) is calculated from the real and imaginary part of the

modulus by use of the equation _ = E"/E', where E' and E" are the real

and imaginary parts of the complex dynamic modulus respectively. The

method can be best illustrated by considering the equation of motion

for a single degree of freedom system using the complex modulus

approach. For many composite materials, the force and d_splacement

cycles will be out-of-phase by i_, so if Fo and Yo are the force and

displacement amplitudes respectively, then

M y + (K' + iK") y = Fo ei(Wt + #), (2.49)

where w is the angular frequency.

Let y = Yo eiwt' then Equation (2.49) can be written as: _-

-M__ + K' = (Fo/Y o) cosi_, and _ (2.50)

K" : (Fo/Yo) sin!_ . (2.51)

For a very small sample, operating at low frequencies (stiffness-

controlled region), the inertia term of Equation(2.50) is usually

neglected. Further, the stiffness K of the beam specimen is related

to the modulus E in the form K = EA/t, where, A is the area of cross

section and t the thickness of the sample. Hence, from Equations

(2.50) and (2.51), the damping ratio can be evaluated as:

.C = K"/K' = 1/2 tan_. (2.52)

v
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Hence the forced non-resonance method relies on the measurement of the

phase angle between the force and displacement signals at a particular

frequency _, thus, it can be used as an indirect method for obtaining

the damping as a function of frequency. This method, however, has a

major drawback in that it can be used only on very small specimens and

in the low frequency region, since the effect of inertia is neglected

in the method. This method has been adapted for the measurement of

the complex modulus of polymers and composites in many commercially

available instruments like the DMTA (Dynamic Hechanical Thermal

Analyzer) [32,33].

In a typical DHTA test arrangement, the displacement is applied

via a loading stage attached to the table of an electromagnetic

vibrator. The displacement is measured usually by a non-contactlng

magnetic transducer. The force is measured by a force transducer

attached behind the specimen. The specimen is mounted horizontally

within a controlled temperature enclosure in a single cantilever or
J

dual-cantilever. A typical sample used in this arrangement is about 1

mm thick, 6 mm wide, and 28 mm long, and the frequency of excitation

is limited to below 90 Hz.

The advantage of this method lies in its ability to study the

dependence of the dynamic properties upon frequency, strain amplitude

and temperature. Materials with a modulus greater than 10 GN/m 2 cannot

easily be tested by this method. For the measurement of the damping

the phase angle must be measured accurately. For phase angles less

than 1 degree it is not possible to measure them very accurately. But
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larger values of phase angles can be measured accurately. The method

therefore is not good for measuring small values of damping, but is

ideally suited for measuring large damping values.

The hysteresis loop approach is another widely used non-resonance

forced vibration method. Its theoretical basis is explained in detail

by Lazan [2]. This method enables the measurement of very low

material damping particularly in metals. It is limited, however, to

the very low loading frequencies that are usually achievable in

material testing machines.

Input Power Method

The theory for this method is developed from a consideration of

the energy balance in the structure. If a-damped mass-spring single

degree-of-freedom system (Figure i (a)), is excited by a force F at a

sinusoidal frequency w, then the dissipated power IIdiss

proportional to the product of damping force Fd and velocity:

is

2_/w

IIdiss/cycl e = f Fd dv = I
0

2

Fd v dt : _cwv o (2.53)

where v o is the velocity amplitude, and c Is the viscous damping

coeffi cient.

In steady state conditions, the power supplied llin from a shaker

must be equal to the power dissipated. Thus if _in can be measured

and _in = _diss is assumed, then _ can easily be calculated from

Equation (2.53). The input power can easily be measured using an
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impedance head. If a simple harmonic force of angular frequency w and

amplitude Fo is applied, then the time-averaged input power is

IIin = VoFo cos#, (2.54)

where # is the phase angle between the force and velocity. Fahy [34]

has discussed the case of input power measurement for random

excitation. Nakayama and Crocker [35] have made extensive

measurements of power supplied to structures and determined the

structural damping from such measurements. According to Nakayama and

Crocker, the input power for a random excitation with a time delay

between the force and acceleration signals is given by:

I fk + Af/2
-1 N 2 {CFa(f)sinAi_k + QFa(fk)C°SA_k} . 9_n [ fk Af/2 ]'(2"55)IIin = 2-_ K=I

where, Af = frequency resolution of the analyzer,

N = number of data points in tile time domain (Block size).

CFa(fk) and QFa(fk) are the real and imaginary parts of the cross

spectrum between force and acceleration respectively at freq_uency fk"

A_k= phase lag between acceleration and force signals. The band-

limited input power can be obtained from Equation (2.55) by a simple

averaging procedure. Structures such as panels have many resonance

"frequencies, and the normal procedure, then, is to measure the space-

averaged mean square velocity over the structure: <V:>s,t. The

dissipative loss factor _ = 2g is then obtained as [36]:

_in
_/ : M<v:>2_f ' (2.56)
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where M is the mass of the structure. The input power method has been

used mainly in conjunction with an approach called the Statistical

Energy Analysis of Structures (SEA)[36]. Cremer, Heckl and Ungar [37]

have developed an expression for the loss factor based on the modal

density (number of modes in a frequency band) for a broad band random

excitation. Clarkson and his co-workers [38-40] have used these

equations to obtain the modal densities and frequency-averaged loss

factors of plates and shells. The frequency-averaged loss factor

results they obtained compared well with the results from the

logarithmic decrement method. According to their experience, at least

five natural frequencies should be present within the analysis band

and the damping should be small for the results to hold good.

The input power method is only an approximate method capable of

yielding frequency-averaged loss factors.

Other Methods

Several other methods for measuring the damping ratio h_ave been

developed specifically for viscoelastic materials. Some of the

important techniques are briefly reviewed here. The Oberst bar

technique - also called the Bruel & Kjaer cantilever beam method, was

developed by Oberst [41] and is the basis for the ASTM standard method

for measuring the material damping [42]. In the original Oberst

method, a cantilever metal beam (steel or aluminum) is coated on one

side with a layer of viscoelastic material whose damping is to be

measured. The beam is excited by a sinusoidal signal with different

frequencies and the frequency response of the system is measured. The
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loss factor _ and the Young's modulus of the material are then

extracted from lengthy equations given in [45]. Due to the high

thermal coefficient of expansion for most viscoelastic materials,

considerable thermal bending is induced on the coating side of the

Oberst bar. In order to cancel out the thermal bending, Nashif [43]

proposed to coat both sides of the beam. He derived separate

expressions for calculating the modulus and the loss factor. In this

method, the loss factor of the metal beam is assumed to be negligible.

Jones [44], further improved the testing apparatus with an approach

that allowed the test specimen to be heated to any temperature within

the limitation of the testing apparatus.

Cannon, Nashif and Jones [45] have proposed another method for

measuring the damping ratio of very soft viscoelastic materials. In

this method, a cylindrical specimen of the material with a variable

mass on top is driven by a shaker. The loss factor can be _alculated

by measuring the amplification factor, which is the ratio of the

resonant displacement response of the top mass to the shaker input.

Although, this method requires a simple test setup, it is not very

accurate for materials with modulus greater than 7 MN/m:.

Ritcher [46], has proposed a rotating-beam deflection method for

measuring the damping ratio. In this method, a tubular shaft, made of

the material under investigation is mounted in a cantilever mode and

rotated about its axis in a horizontal plane. The horizontal and

vertical displacements of the free end of the shaft are measured

optically, and their ratio is related to the loss factor. The
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rotatlng-beam deflection method, however, has not been popular since

it requires very-high-precision optical instruments and is limited to

very low frequencies (0.001 to 20 Hz).

Damping has been estimated in the special case of a base-excited

system by measuring the ratio of tip to base displacement amplitudes

of a cantilever-beam specimen vibrating in its fundamental mode [47-

50]. Gibson and Yau [51], have derived a more general expression for

calculating the damping in terms of the displacement amplitude at an

arbitrary point along a beam vibrating in any mode. In a previous

paper, Gibson and Plunkett [52], have measured the damping ratio of a

double-cantilever beam specimen from the energy balance method. Under

steady state conditions, the material damping is defined in terms of

the ratio of input energy to the strain energy stored in the systems.

In their experiments the specimen was driven in its first or second

mode, and the resonance frequency, input acceleration and bending

strain (using a strain gage) were measured. The input energy and the

strain energy were calculated from the above-measured quantities and

the specimen geometry. The accuracy of the damping ratio obtained by

this method depends on the accuracy with which the bending strain is

measured.

A method utilizing the gravitational acceleration called the

gravity_mmethod has been proposed by Sekiguchi and Asami [53] for

measuring large damping. The authors have used this method for

measuring the viscous damping coefficient of an oil damper. Several

types of wave pro__a__ation methods have been reported in recent years
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in connection with the measurement of dynamic modulus of long and

slender composite specimens or structural elements [12,54]. The

dynamic properties of the test specimen are measured by observing the

changes that occur in certain characteristics of a stress wave during

its propagation through that medium. Both pulse and continuous waves

can be utilized. The main advantage of this method is its ability to

generate damping data that are independent of the damping of the

support system. The drawback, however, is that tests are confined to

long and slender rods subjected to high loading rates.

Summary

Among the various methods for measuring the damping ratio of

materials and structures described in this chapter, the logarithmic

decrement method and the half-power points method are simple, but not

very accurate. For obtaining more accurate results, either the

impulse response method or the improved resonant forced vibration

technique should be used. The improved resonant forcedvibration

technique consists of the estimation of the damping ratio from an

iterative least-squares curve-fitting procedure for the measured

frequency response data. The non-resonant forced vibration technique

_s applicable only for testing very small samples in the low frequency

range. For studying the variation of damping with frequency, the

input power-method can be used to get some approximate idea. Finally,

several new methods developed specially for evaluating the damping of

viscoelastic materials were described.
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The choice of the technique to be used for a particular

application depends on several factors such as • 1) the modulus of the

material, 2) the damping of the material, 3) the instrumentation

available, d) the frequency and displacement amplitude range of

interest, e) the accuracy required in the estimation of the damping,

etc. As a rule, while measuring the material damping by any method

care must be exercised to minimize the errors due to various factors

in the data collection, and data analysis process. Some of these

factors are listed below:

I) Specimen mountin_ - mount the specimen so as to avoid external

losses at the supports, joints etc. A free-free boundary condition is

ideal for material damping measurements.

2) Transducer/exciter mounting - location and orientation - use of

mini-accelerometers or non-contacting type of transducers and exciters

is recommended to minimize the effects of the added mass on the

response of the system.
f

3) External disturbances - Minimize the effects of external

influences like, electro-magnetic interference, foundation vibration,

acoustic noise, cable motion, air damping, fluid flow, etc.

4) Non-linearit Z of the structure -- such as, rattling, banging,

whipping of loosely fastened components, violation of "small-

displacement" theory, non-linear stiffness, non-linear damping, etc.

should be avoided wherever possible.

5) Data analysis - The various signal processing errors that could

arise because of inappropriate selection of the measurement parameters
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such as weighting function, number of averages, amount of overlap,

calibration factor, etc. should be minimized. Errors due to aliasing

and leakage should also be reduced.

V
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III. LITERATURE REVIEW

Previous Pertinent Work on the Damping of
¢o___osite Materials

Efforts to measure, model and improve the dynamic properties of

advanced fiber-reinforced polymer composite materials have been

reported in several publications in recent years. There is a wide

range of specimen configurations, materials, frequency range, and

testing conditions, in the existing literature. Bert [55], Gibson and

Wilson [56], and Gibson [57] have reviewed the work of various

investigators in this area. Schultz ann Tsai [58] have reported the

measurement of elastic moduli and damping ratios of glass epoxy

composite materials. Data on moduli and damping ratios were gathered

by studying the free and forced transverse vibrations of _antilever

beam specimens in the frequency range from 5 Hz to I0,000 Hz. The

elastic moduli showed little tendency to change within this frequency

range, and the damping ratios were typically of magnitude 10-2 . They

however, exhibited both frequency and amPlitude dependence. Jones

[59] has measured the damping ratio of steel epoxy composite material

having controlled volume fractions and varying wire sizes.

In a study of dynamic properties of graphite epoxy composites,

Rehfield et al [60] noticed that these materials experience a

degradation of mechanical properties due to moisture absorption and

presence of elevated temperature environment. Leung [61] has studied

48
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the effects of gamma-radiation exposure on the mechanical properties

of graphite epoxy composites. Interlaminar shear strength and the

damping ratio showed an initial increase, followed by a decrease as

the dosage of the gamma radiation was increased. In another study,

Springer and his co-workers [62-64] have made an extensive

investigation on the effect of moisture absorption and desorption on

the dynamic properties of graphite epoxy and glass epoxy composites.

The effect of these properties on the damping capacity, however, was

not included in their study.

The effect of temperature on the damping and modulus of composite

materials has also been studied. The variation of Young's modulus

(E), and loss factor _ with temperature at fixed frequency and at low

cyclic strain amplitude are typically of the form shown in Figure 5

[6s]..

|
i
w

i

/.
IluOl_rl_t

Ttm_atu_

Figure 5. Variation of Storage Modulus and Loss Factor With

Temperature for Typical Damping Materials
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Three distinct regions are observed, namely the glassy, transition

and rubbery regions. In the glassy region E is high and _/ is low; in

the transition region E varies rapidly with temperature and _/ Is high,

in the rubbery region E varies more slowly with temperature and _ is

lower than in the transition region, although notalways as low as in

the glassy region. For manymaterials, not one but several transition

regions may occur, which usually merge into one another. Yakovlev and

Bykovskii [66] have studied the effect of temperature on glass fiber

epoxy composites. Their results indicate that the variation of

damping with temperature depends on the kind of fiber, fiber length

and orientation. The authors also noted that, at cryogenic

temperatures, the damping of the glass epoxy composites was much lower

than the damping at room temperature.

The effect of fiber orientation and lamination on the elastic

modulus and damping capacity of composites has been studi-ed by some

investigators [67-73]. In most composite materials, it has been found

that the damping is minimum and stiffness is maximum at 0° fiber

orientation, i.e., in the fiber direction. As the orientation angle

is increased, the general trend is for the damping to increase up to a

certain value, and the stiffness to decrease. For carbon fiber epoxy

composites, the maximumdamping is reported to occur at a fiber

orientation of about 670. According to the study by Mazza et al.

[68], cross-ply glass fiber reinforced composites have considerably

more damping than 0° unidirectional fiber-reinforced composites.

Adams and Bacon [70], in their study noted that the damping of
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graphite fiber-reinforced composites, decreased slightly with the

cross-ply ratio [ratio of the total thickness of layers of 0°

orientation to total thickness of layers of 900 orientation].

The effect of imperfect interface bonding on damping

characteristics of composites has been investigated by Kishore, et al.

[74,75]. Very high loss factors were obtained, and the loss factors

were strongly dependent on the coefficient of friction at the

interface. Nelson, et al. [76,77] have also noticed that slip in

unbonded regions of the interface caused a significant increase in

damping.

There is some promise that damping could be used qualitatively to

detect damage in composite materials since the damping is quite

sensitive to damage in composites. Gibson and Plunkett [78], in their

study, progressively damaged cross-ply E-glass composite beams with

large amplitude vibration and determined changes in damping and

natural frequency. They found that microstructural damage could

cause as much as a 350% increase in damping and at the same time

reduce the natural frequency by 5% or less. Adams [79], has used

frequency shifts of longitudinal modes in a glass epoxy tube cross

sectional area. Cawlay [80,81], has extended Adam's work to two

dimensions, using modal analysis and finite element analysis to detect

and locate localized damage in cross-ply and single-ply graphite epoxy

plates. The information on the variation of damping with the number

of loading cycles has been most inconsistent. The general trend is

for the damping to increase with the number of loading cycles [82.83].
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In contrast to this general trend, Kim and Matthews [84], noticed a

rapid decrease in damping in the first few cycles, followed by a

gradual decrease after that. This initial rapid decrease in the

damping was attributed to the residual strain caused by the mismatch

between the fiber and matrix thermal-expansion coefficients.

Finally, the mathematical prediction of the dynamic properties of

laminated composite materials has been investigated by many authors.

Hashin [85] has predicted the complex moduli of unidirectional fiber

reinforced materials based on the properties of resin and fiber.

Gibson and Plunkett [78] have described a mathematical model for

predicting the effective complex moduli of unidirectional and cross-

ply glass epoxy beams in flexural vibration. This model was an

extension of Hashin's model. Chang and Bert [86] have investigated

the analytical characterization of the damping and stiffness behaviour

of a single layer of filamentary composite material.

Adams and Bacon [70], have proposed a model for predicting the
r

damping of a narrow angle-ply laminated plate. This method has

recently been i#urther developed by Ni and Adams [87]. They have shown

good agreement can be obtained between predicted and measured values

of damping and stiffness of carbon and glass fiber-reinforced plastic

beams. In an accompanying paper, Lin, Ni and Adams [88], have used a

finite element model of Cawley and Adams [89] to predict the natural

modes and damping capacity of carbon and glass fiber reinforced

laminated plates. Hwang and Gibson [90,91], have demonstrated the

application of a finite element model based on the strain energy
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approach for predicting damping in discontinuous fiber composites.

Johnson and Kienholtz [92], have also used the finite element method

to predict the damping in structures with constrained viscoelastic

Iayers.

v

i

Previous Pertinent Work on the Damping of
Structural Joints

It has been found that nearly 90% of the total damping which

occurs in real structures usually arises in the structural joints

[93]. The energy dissipation in a Joint is a complicated process

involving several mechanisms, the relative significance of which

depends on the joint conditions. Because of the complexity of the

problem it appears that very little work is being done in analyzing

the damping in joints and built-up structures. In an adhesive bonded

Jq_nt, it is the interface between the adhesive and the adherant that

is more prone to environmental degradation and which plays_ key role

in the damping capacity of the joint. A major source of damping in a

joint is the Coulomb friction damping which arises due to frictional

forces arising from the relative motion of two contacting surfaces.

This is usually modelled by a constant force which is proportional to

the normal load between the surfaces and is directed against the

velocity vector at each instant. But, in actual practice, the amount

of energy dissipated depends on both the normal and tangential forces

in a complicated and non-linear fashion [94-99]. Another source of

damping in a joint is that due to pumping of air, water or other

fluids through highly constrained passages [100,I01]. The damping is

=
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caused by the change in spacing of the parts. For example, if a rib

is riveted or spot-welded to a plate, it will not make contact at all

points. If the combination is then bent, the clearance between the

two will change, thus 'pumping' the surrounding fluid (air or water)

through the narrow passage between them. The viscosity of the fluid

will cause the damping.

The damping in a joint is generally non-linear. Most attempts

are made to linearize the equations in some way [102,103]. A very

useful method is to calculate an equivalent viscous force component to

obtain the enegy dissipation. Crawley and co-workers [104-105], have

developed a method called the force-state mapping for identifying the

non-linear properties of structural members such as joints. The

technique includes the use of very accurate instrumentation to measure

the force transmission properties of a Joint as a function of the

relative displacement and velocity across the Joint; i.e., as a

function of the full mechanical state of the joint. The force-state

map of a general linear spring mass damper system would be a plane

whose slope with respect to displacement would be the linear stiffness

K and with respect to velocity would be the linear viscous damping.

Any deviation in a force-state map from a flat plane is an indication

of a nonlinearity in the system. The force-state mapping technique has

been shown to provide a good method for characterizing the dynamics of

joints and structural elements.

V
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IV. MEASUREMENT OF DAMPING OF GRAPHITE EPOXY MATERIAL

The main objective of the work reported in this chapter was to

determine experimentally the material damping of the graphite epoxy

material used in the construction of the truss system of the Hubble

Space Telescope. Other objectives were: a) to study the effect of

outgassing (moisture desorption) on the damping of the material, and

b) to determine the influence of temperature (both high and low) on

the material damping values. Damping measurements were made on both

tube and beam specimens, These samples were supplied by the _ASA

George C. Marshall Space Flight Center. The following sections

describe the test strategy, experimental apparatus, test procedure and

results and discussions.

Tube Specimen
i

The composite tube supplied by NASA was in the form of a

cylindrical tube with 6.17 cm outer diameter, 0.16 cm wall thickness,

and 95.5cm length. The tube was tested to evaluate its damping ratio

value under normal atmospheric conditions and in a vacuum chamber to

simulate the conditions in space.

Damping Measurements in Normal Atmospheric Conditions

Both free vibration and forced vibration methods were employed.

The ambient temperature averaged 27°C during the whole period of
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experimentation. The tube specimen was first tested with two

different types of edge support conditions. They were: 1) knife edge

supports to simulate idealized simply-supported boundary conditions at

the edges, 2) a three-points support to hold the tube at the edges.

Then a free-free support condition with no constraints at the edges,

was utilized which was found to be most suitable and consistent for

accomplishing our main objective.

The idea of using knife edge supports at the two ends of the tube

specimen was to simulate the idealized simply supported boundary

condition. This type of boundary condition is normally used in the

theoretical analysis for its mathematical simplicity. But to simulate

such a boundary condition is rather difficult in practice. The

constraint here is that the support should not allow any axial or

Vertical deflection of the specimen at the ends, and allow any slope

at the ends due to any bending moment. With this in mind, it was

decided to use circular knife edge supports to simulate this boundary

condition. The design was such that one knife edge would support the

tube from the inside and the other would support it from the outside

at each end location. Each circular outer knife edge was made of

stainless steel in two halves to facilitate easy mounting. Each inner

knife edge was also made from stainless steel but was only in one

piece. A housing to hold the knife edges was designed and fabricated.

This housing allowed the movement of the knife edges in the axial

direction for fine adjustment. The housing was made from mild steel.

--=7
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Figure 6 shows the knife edges and housing which were designed. Two

such supports were fabricated, one for each end of the tube.

Some preliminary measurements of the damping value of the tube

specimen with the knife edge supports indicated a large contribution

from the edge supports. Hence, in order to reduce the influence of

the support damping and to measure only the material damping, a new

type of edge support was designed and fabricated as shown in Figure 7.

The idea here was to support the tube at each end at three points

which were 120 degrees apart.

Free Vibration Experiments

A schematic diagram of the experimental set-up used in the free

vibration tests is shown in Figure 8. The test set-up consists of a

non-contacting type (capacitive) displacement transducer (ASP-20)

along with a measuring amplifier (Accumeasure System 1000 made by MT

Instruments). A holder was developed for the pick-up to allow for

easy adjustment of the gap between the specimen and probe'surface.

The output in the form of voltage from the transducer was fed to the

dual channel signal analyzer (B&K type 2032). The specimen was

excited for free vibration with an impulse using a small hammer and

the vibration displacement as a function of time was recorded on the

analyzer. The damping ratio value of the tube specimen was obtained

from the time domain data by the logarithmic decrement method. The

accuracy of estimation of the damping value was later improved by

fitting a curve to the data obtained using a least-squares error

criterion.
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The experiments were conducted using both the knife edge and

three-points supports. The specimen was held in the supports at both

the ends. The tube specimen with the supports was cIamped to a rigid

stand with a heavy base specially fabricated for this purpose. With

the knife edge supports, three sets of results were obtained, namely

1) for very large amplitudes of displacement, 2) for moderate

amplitudes of displacement and 3) for very small amplitudes of

displacement. The values of damping ratio obtained using the

logarithmic decrement method in the three cases are summarized in

Table I. It can be seen that the damping ratio is of the order of

1.0% in all the cases. In order to obtain a better estimation of the

damping ratio value, a least squares curve-fit was used for the time

domain data as mentioned earlier. Figures 9 through 11 show the

least-squares fit for the experimental data obtained with the knife

edge supports. Note that in Figures 9 through 11 the displacement

amplitude is plotted on a logarithmic scale. The tube damping ratio

value obtained from the least-squares fit procedure agrees with that

obtained from the logarithmic decrement method. It is seen that in

Figure 11, for very small dfsplacement amplitudes, there seem to be

some oscillations in the decay data. This is perhaps due to the

external noise, since at very small displacement amplitudes, the

signal to noise ratio is low.
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Table I

Computation of DampingRatio of the Tube SpecimenFrom
Different Cycle Ratios

Case1

Max. Displacement

_3

3.6 x 10 cm.

Case 2 Cycle 3

Max. Displacement Max. Displacement

_S _3

1.3 x 10 cm. 0.1 x 10 cm.

=1.09% _ =1.07% _ =1.19%
0-35 0-35 0-20

=1.00% _ =1.13% g =1.47%
0-20 0-20 0-10

=0.97% _ =1.16% _ =0.91%
0-10 0-10 10-20

=1.04% 9 =1.10% E =1.09%
10-20 10-20 0-15

E =1.20% 9 =0.99%
20-35 20-35

_m

=1.06% 9 =1.09% 9 =1.16%

average average average

Legend: the subscript 0-35 indicates that the damping ratio was

obtained from the vibration decay measurement from 0 to 35 cycles.

_F_w

,/
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Experiments were repeated on the tube specimen using the three-

points supports at the ends of the tube. The same experimental set up

as described earlier was used in this experiment. The damping ratio

value with this type of support was also about 1.0%. Experiments with

this type of support showed that the damping ratio value is very

sensitive to the positioning of the three supports. For the case of

the knife edge supports, a Fourier transform of the time domain data

indicated a dominant resonance peak at a frequency of 390 Hz, when the

length between the supports was 91.4 cm (36 inch). For the case of

the three-points support, the resonance frequency was reduced to 299

Hz for the same length between the supports.

The theoretical resonance frequencies of the tube specimen with

simply-supported ends for flexural vibration were determined using

Beam theory. From this analysis, the flrstand second modal

frequencies were found to be 321 Hz and 1287 Hz respectively. Hence,

it is seen that the experimental resonance frequency of 390 Hz, is not

matched very closely by that of the theoretical first bending mode

frequency of the tube specimen. The discrepancy between the two

values can be attributed to several factors, such as the knife edges

not exactly simulating an ideal simply-supported boundary condition,

"the material modulus being different in different directions of the

tube specimen.
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Forced Vibration Experiments

A schematic diagram of the experimental set-up used for

conducting forced vibration tests is shown in F_gure 12. In this set-

up the specimen was excited by means of a shaker (B & K 4809) driven

by a random noise generator. The shaker was suspended using a very

soft rubber rope thus enabling the natural frequency of the shaker

suspension system to be much less than the natural frequency of the

test specimen. In the present case the natural frequency of the

suspension system was observed to be about I Hz. The experiments were

performed on the specimen using the same edge supports as in free

vibration tests, namely, the knife edge supports, and the three points

supports. The-frequency response of the specimen in the form of its

receptance (displacement/force) was measured using an impedance head

(B&K 8001) and a dual channel signal analyzer (B&K 2032.)_ From the

response curve the half power points and hence their bandwidth of

(&f) and the natural frequency (fn) of thefrequency separation

specimen were measured. The damping ratio (_-) is given by _ = Af/2fn.

The improved half-power points method using a curve-fit analysis

(chapter 2) was later used in all the cases to obtain a better

estimation of the damping ratio. The results were not very

consistent, the lowest value of the damping ratio measured with this

support was of the order of 0.57%. Using the same experimental set-

up, a second set of experiments was conducted on the tube specimen

with the ends supported by means of three-points support. The damping
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ratio value obtained in this case was of the order of 1.15%. The

difference in the damping ratio of the composite specimen with the two

edge support conditions confirms that the edge supports had

considerable influence on the damping ratio of the specimen.

Having established that the damping ratio of the composite tube

is strongly dependent on the end support conditions, it was decided to

support the specimen so that the two ends of the tube were not

constrained at all. This type of support simulated free-free boundary

conditions at the two edges. A schematic diagram of the experimental

set-up for this case is shown in Figure 13. The specimen was

carefully mounted directly on the shaker and the impedance head using

a supporting ring (made in two halves) with an interior knife edge as

shown in Figure 13. The inner knife edge of the ring allowed the tube

to be held firmly in the ring. The ring also had a tapped hole on its

outer surface to connect it to the impedance head and shaker assembly.

Stainless steel ring ,,lC oL mposite tube
.--

/ /

Accelerasigna ion ]

///.//

-°

rr ..Impedance head

F Force signal
t-t

1
I I

To power

amplifier

Figure 13. Tube Specimen with Free-Free Boundary Conditions

///// / /// //
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The tube with the free-free edge conditions was then excited

using a random excitation signal in the frequency range of 0-800 Hz.

A dominant peak at 509 Hz was observed in the frequency response plot

as shown in Figure 14. The response was later measured by zooming

into this peak to get better frequency resolution. The so-called zoom

analysis is actually a band selectable Fourier analysis, in which

Fourier transform based digital spectral analysis is performed over a

frequency band whose upper and lower frequencies are independently

selectable. In the baseband analysis, Fourier transform is computed in

a frequency range from zero frequency to some maximum frequency. This

digital Fourier transform is spread over a fixed number of frequency

lines (typically 1024) which therefore limits the frequency resolution

between lines. Zoom analysis can provide an improvement in frequency

resolution of more than a factor of 100, as well as a 10 dB inci'ease

in dynamic range compared to baseband Fourier analysis[19]. In the

present case, the frequency difference between any two consecutive

measurement points on the analyzer was decreased from 1 Hz to 0.125

Hz, through the zoom analysis. With this set-up the damping ratio

value of the specimen was measured and found to be about 0.13%. This

was the mean value from 10 trials. There was a variation of about

*0.03% in the values of the damping ratio _. This value is about 8

times lower than that obtained earlier, and hence was believed to be

mostly due to the material damping of the specimen as there were no

structural joints and the specimen was not constrained at its ends.
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The measurements were repeated several times on different days, in

order to check the consistency of the result. Similar results were

obtained on all the occasions. The experiment was also repeated with

two other types of excitation signals, 1) pseudo random noise and 2)

variable sine with manual sweep. Similar results were obtained with

both of these types of excitation.

The next course of investigation was directed at calculating the

damping induced by the supporting ring used in the above free-free

experiments. In order to check the damping induced by the supporting

ring, measurements were made with the top half of the ring removed.

The specimen then was supported only by the bottom half of the ring.

It was observed that the natural frequency of the specimen (first

mode) increased to a value of 552.5 Hz due to the influence of the

reduced mass of the supporting ring. But the damping ratio value

obtained was the same as that obtained with the full supp°rting ring,

namely 0.13%. This gave more confidence in the measured value of the

damping ratio of the specimen. The dominant peak at 509 Hz as shown

in Figure 14 corresponds to the first bending mode of vibration of

the tube. This was revealed by carrying out a modal analysis of the

tube specimen. The measured mode shape is shown in Figure 15.

The next set of experiments was conducted on the cylindrical tube

specimen using the free-free boundary conditions (half ring)in order

to study thevariation of the damping ratio value with different modes

of vibration. Figure 16 shows the frequency response curve of the

specimen in the frequency range of 0 to 3.2 kHz. The numerical value
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of the resonance frequency of each mode of vibration cannot be

accurately estimated from this plot due to its large frequency range

and hence poor frequency resolution. To reduce this problem, two

techniques may be used, a) reduce the frequency range of analysis, b)

zoom the frequency response plot at the natural frequency of interest.

The resonance frequencies estimated from the plots obtained through

zoom analysis for the first six modes of the specimen are given in

Table 2. It is seen from the table that the damping ratio value

increases with the mode number. This increase could be attributed to

increased frictional losses at the center support dueto increased

curvature of the mode shapes at the support point.

Table 2

Damping of the Tube Specimen in Different Modes
for Free-Free End Conditions

Peak No. Frequency(Hz) Damping Ratio

1 552.5 0.13%

2 1514.0 0.25%

3 1873.0 0.33%

4 2204.5 0.35%

5 2232.0 0.36_

6 2841.8 0.36%
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To summarize, all the above experiments were performed on the

cylindrical graphite epoxy tube specimen under normal atmospheric

conditions. The damping ratio value was measured using free and

forced vibration techniques. All of the damping results from the

above experiments are summarized in Table 3. The damping values

obtained using the free-free boundary condition for the edges are

believed to represent most closely the material damping of the

specimen. As stated earlier the damping value is significantly

influenced by the edge support conditions. Edges and support fixtures

can normally be expected to increase the value of damping.

Tabel 3

Damping of the Tube Specimen for the First Bending Mode

Using Different End Conditions

End Condition

Knife Edge Supports

Three-points Supports

Free-Free

Damping Ratio

0.9O - 1.10 %

1.00 - 1.20 %

0.10 - 0.15 %

Frequency

39O Hz

298 Hz

553 Hz
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Damping Measurements in a Vacuum

A vacuum chamber as described in this section was designed and

built to test the cylindrical graphite epoxy specimen. The following

factors were considered for the design of the chamber: I) The chamber

should have a small volume which should thus require a short time to

create a vacuum in the space. A small volume in the chamber should

also make it possible to heat the specimens and degas them more

easily. 2) It should have a minimum number of connecting Junctions In

order to avoid leakage problems. 3) It should be made so that it is

convenient to excite the cylindrical graphite epoxy specimens with

different edge support conditions. 4) It should be made convenient to

test the cylindrical graphite epoxy specimens of different lengths. 5)

It should be rigid and should be isolated from the vibration of

structural parts. Keeping these factors in mind, two designs were

considered: i) A rectangular box type enclosure for the specimen, ii)

A cylindrical chamber with end flanges. In view of the difficulties

that were envisaged in providing vacuum sealing around all the edges

and also the difficulties that are likely to be encountered in

providing feed-throughs, a rectangular type of chamber design was

discarded.

It was decided to use a cylindrical chamber design whose details

are shown schematically in Figure 17. It was also felt that it would

be easy to procure cylindrical stainless steel tubes which would then

make it possible to avoid many welding and sealing problems. A four-

way stainless steel cross (15.24 cm in diameter) was used to support
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the chamber as shown in Figure 17. The feed-throughs, ports, etc.

were provided at the top of the cross. A heating coil was provided

inside the chamber for heating the graphite epoxy specimen. This

heating coil was necessary to ensure that the composite material

outgassed rapidly. Two six-inch stainless steel tubes (of 33cm

length) with end flanges were connected to the flanges on the two

sides of the cross as shown in the figure. The bottom flange of the

cross was connected to the vacuum pump unit. The joints at the

flanges were provided with O-rings and were sealed with vacuum grease.

Considerable time and effort was spent to detect the leaks in the

vacuum system and in the vacuum chamber. The system was able to

_3

produce a vacuum pressure of about 10 torr (1 torr = I mm of Hg).

The tube specimen was carefully placed and positioned in the

v_cuum chamber. A free-free edge support condition was simulated for

the specimen by the use of the full ring with an inner knife edge as

discussed earlier. The tube specimen was excited by means of an

electrodynamic shaker. Figure 18 shows the fixture designed for

exciting the tube specimen in the chamber for forced vibration

experiments. The excitation force from the shaker was transmitted to

the composite tube with the help of a thin rod and a metallic bellows

assembly. The end flanges of the bellows were connected to the mating

flanges of the connecting elements (half nipples) by using copper

gaskets and screw nuts. Care was taken to see that the specimen was

in a horizontal position and that it did not touch the sides of the
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Stainless Steel nut

1
StQInless Steel rinq

Figure 18. Experimental Set-up for Exciting the Tube Specimen
in a Vacuum Chamber
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vacuum chamber. Figure 19 shows a photograph of the vacuum chamber in

its assembled form, and Figure 20 is a cut-out view of the chamber

showing the composite tube, heating coil and the impedance head.

Experimental Procedure and Results

As before, the frequency response measured in the present case is

also the receptance, which is the ratio of the displacement to force.

The damping ratio and the undamped resonance frequency were estimated

using the half-power points method along with the curve-fitting

technique which was discussed before. Random excitation with a

Harming window was used in all the experiments. Some experiments were

repeated with a swept sine excitation and similar results for the

damping ratio value were obtained as with random excitation. The

random excitation was chosen since results are obtained faster with

t_is type of excitation than with sine sweep testing. The response

curve was zoomed in the frequency range of 450 Hz to 550 Hz to obtain

the first bending mode of vibration. This was found to he'the best

set-up for a good frequency resolution.

First, measurement of the damping ratio of the tube specimen was

made while the tube was in the vacuum chamber before the air was

pumped out. Several measurements were made in order to check the

repeatability of the results. Figure 21 shows the result of a

measurement made on the tube at 27°C (80°F) under atmospheric

conditions before the chamber was evacuated. The damping ratio
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Figure 19. A Complete View of the Vacuum Chamber

Figure 20. A View Showing the Tube Specimen Inside the Vacuum Chamber
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measured was about 0.10% and the resonance frequency was about 531.9

Hz. This value of the damping ratio is somewhat close to the value of

0.13% obtained earlier for the same specimen in tests performed in

normal atmospheric conditions. The slight discrepancy between the two

values can be attributed to the difference in the experimental

configuration.

Later the end flanges of the vacuum chamber were closed and the

vacuum pump was started. The damping ratio value and the resonance

frequency of the tube specimen were measured on each day for the next

_2

two days. The vacuum pressure was observed to be 10 torr on the

_3

second day and 10 torr on the third day. The temperature inside _he

chamber was still the ambient temperature, namely 27°C (80°F). The

damping ratio value of the specimen was measured to be 0.06g% on both

of the days. Figure 22 shows the frequency response plot measured on

the second day.

The heating of the specimen was started on the third day. A

heating coil was placed inside the vacuum chamber below the tube

specimen (before pumping was started). Care was taken to see that the

coil did not touch the tube anywhere. The current through the coil

was gradually increased until the temperature of the space inside the

chamber was 94°C(200°F). The tube was kept inside the chamber at this

pressure for a period of one month. The objective was to desorb the

moisture from the tube material.
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At the end of the fourth week the heating of the tube specimen

was stopped. The tube was then gradually cooled to room temperature.

The damping ratio value and the resonance frequency of the tube

specimen were measured. When the temperature of the chamber was

cooled to 26°C (atmospheric conditions) it was interesting to observe

that the damping ratio value of the tube was 0.063%. This value is

very close to the damping value obtained for the tube specimen four

weeks earlier before the heating was started.

Finally after cooling, the pressure in the chamber was restored

to atmospheric conditions and the damping ratio value of the tube was

measured again. It was found to be 0.083% and the resonance frequency

was 531.20 Hz. Earlier, under atmospheric pressure, the tube damping

ratio value was measured to be 0.10%.

- The tube was then carefully dismantled and it was weighed in a

precision balance. The difference in weight of the tube-before and

after heating was found to be 4.20 grams. The percentage change in

the weight of the tube from its original weight was 0.9%. This was

assumed to be caused by the loss of moisture which occurred while the

tube was degassing. The change in damping ratio value due to

outgassing of the tube specimen was observed to be 0.016%.

All of the results discussed so far in this section are

summarized in Table 4.
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Table 4

of the Damping Data of the Tube Specimen in a Vacuum

ACTIVITY CHAMBER DAMPING MASS OF
PRESSURE RATIO • THE TUBE

1. Before pumping the air out Atmospheric 0.10 7. 488.8 grams

--2

2. Immediately after pumping 10 tort" 0.07 X --

-3

.3.Continued primping--2 days 10 fort" 0.07 7. -

4. Continued pumping and -2 -J

heating the tube to about 10 - 10 _orr o.oB-O.O9 x

1O0 C for 30 days

5. Stopped heating end

pumping. Atmospheric Atmospheric 0,08 7. 4s2.6 grams

conditions restored

* I,lean valuu of 1"0trials I torT- I mm Hg

= =
V

/
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Temperature Effects on the Damping of the
Graphite Epoxy Material

The next course of the investigation was directed at finding the

effects of temperature on the damping of the graphite epoxy material.

Experiments were conducted on both tube specimen and some beam-like

samples using specially built temperature chambers. Forced vibration

experiments were conducted on these specimens with free-free boundary

conditions. All of the measurements were made in air, since, it was

more convenient to conduct experiments at controlled temperatures in

air than in a vacuum.

High Temperature Experiments

_ Figure 23 shows a schematic diagram of the experimental apparatus

used to study the effects of high temperatures on the damping of beam

s_mples. The specimens were carefully mounted inside the temperature

chamber and were supported at the center by a steel rod. The steel

rod was tapped and attached through a hole in the specimen by means of

a small nut. The other end of the steel rod was connected to the

shaker via an impedance head. The force and the acceleration signals

from the impedance head were fed to the FFT analyzer after

amplification by the charge amplifiers. The temperature inside the

chamber was monitored and controlled precisely by two chromel-alumel

thermocouples and a temperature control programmer. As before, damping

ratio values were extracted from the receptance plots using the

improved hal f-power points method.
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Figures 24 and 25 show the variation of the damping ratio with

temperature for graphite epoxy beam specimens of two different

lengths. The temperature where the first peak appears is believed to

be the glass transition temperature of the material. As can be seen

from these figures, the variation of _ with temperature has almost the

same trend in both cases, and also it agrees well with the standard

plot found in the literature [see Figure 5 ].

A similar experiment was conducted on the tube specimen. Because

of the limitations of the heating equipment, it was possible to raise

the temperature of the tube only up to 300°C. For better temperature

control, the temperature of the tube was measured at three points

along its length. The temperature of the tube was gradually increased

from atmospheric temperature and damping measurements were made at

regular intervals. The frequency response was measured when the tube

temperature was the same at all the three points. Figure 26 shows

the final result for the variation of _ from atmospheric temperature

to about 300°C. This is again for the first bending mode of vibration

of the tube. It is seen from this figure that the trend in the

variation of _ is somewhat similar to that of the beam results, i.e.

the damping ratio increases with temperature. The discrepancy in the

absolute value of the damping ratios and the value of the glass

transition temperature as observed in the three plots could be

attributed to a) difference in the geometry of the specimens, b)

difference in the frequencies of vibration and c) difference in the

lamination (fiber winding) of the beam and the tube samples.
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In order to gain confidence in the experimental methodology

followed, and to validate the results obtained so far, it was decided

to conduct the same temperature experiments on some metal beams.

Figures 27 and 28 show the variation of damping with temperature for

an aluminum beam and a stainless steel beam respectively. As can be

seen from these results, the damping capacity of these materials is

almost constant with temperature.

Low Temperature Experiments

The experimental apparatus used previously for conducting high

temperature experiments was not suitable for conducting low

temperature experiments. Hence, an entirely new temperature chamber

was designed and fabricated. It was initially planned to conduct the

low temperature experiments in a vacuum chamber. Thus, the set-up

shown in Figure 29 was developed. As can be seen from the f_igure, the

specimen to be tested was enclosed in a temperature chamber, which, in

turn, was placed in a vacuum chamber. The specimen was connected to

the shaker (the shaker was kept outside the temperature chamber, but

inside the vacuum chamber) by means of a steel rod and an impedance

head as was done during the high temperature experiments. The

temperature chamber consisted of double-layered side walls forming a

closed cavity. The cavity had an inlet and an outlet for the flow of

liquid nitrogen through it. The outside surface of the chamber was

well-insulated so that only the specimen which is inside the chamber

will be cooled. There was also a small heating coil in the chamber to

heat the specimen if required. The flow of liquid nitrogen was
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controlled by varying the pressure in the liquid nitrogen dewar. Dry

nitrogen gas from a cylinder was sent into the dewar, increasing the

pressure and thus forcing the liquid to flow out through the siphon

into the chamber. The temperature in the chamber was controlled by

adjusting the flow rate and also when required using the heating coil.

All the hoses and tubes were insulated to minimize thermal losses.

Efforts to maintain a vacuum and low temperature conditions inside the

chamber were unsuccessful because of many experimental difficulties.

Hence all the experiments were conducted under atmospheric

pressure. Experiments were done on the following four samples:

1) Graphite epoxy beam of dimensions 16.5 x 2.5 x 0.3 cm, 2) Graphite

epoxy beam of dimensions 25.4 x 2.5 x 0.3 cm, 3) Aluminum beam of
w

dimensions 25.4 x 2.5 x 0.3 cm and 4) Graphite epoxy beam of

dimensions as in I, with a simple lap joint having an overlap of 8.9

cm.

The procedure used in the experiment was as follows. The

specimen was first carefully mounted inside the temperature chamber

and was supported at the center by a steel rod as explained before.

The force and acceleration signals from the impedance head were fed to

the FFT Analyzer. First, damping measurements were made at atmospheric.

temperature. Then the sample was cooled to the desired temperature by

feeding an appropriate amount of liquid nitrogen into the cooling

chamber from the dewar. The temperature of the sample was monitored

precisely by means of two chromel-alumel thermocouples attached at two

different locations on the sample. The difference between the
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temperatures at the ends of the sample never exceeded 1 to 2°C during

the experiment. The frequency response in terms of the receptance

function (displacement/force) was measured on the FFT analyzer.

Random signal excitation was used and 100 averages were taken for each

measurement. The whole measurement process took only about 50

seconds. But more time was spent in achieving a stable temperature,

since the temperature control was done manually by adjusting the rate

of flow of liquid nitrogen. The experiments were quite consistent and

the results were repeatable. The following paragraph describes the

results.

Figures 30 and 31 show sample frequency response curves for the

second specimen tested at temperatures of 24°C and -130°C

respectively. The peak at 262 Hz corresponds to the first bending

mode of vibration and the peak at 1330 Hz corresponds to the third

bending mode. All the damping measurements were focused on these

modes. It was not possible to excite even numbered modesCsince the

beamwas excited at its center which is a node point for even numbered

modes.

Figures 32 through 36 show the variation of damping ratio with

temperature for the four samples mentioned before. The curve-fitting

method based on the half-power points method was used in each case to

compute the damping ratio from the receptance plots. Figure 32

corresponds to the first graphite epoxy beam specimen. The damping

ratio value of the sample was 0.23% at 24°C and was reduced to about
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half this value (0.12%) when the temperature was reduced to about -

60°C. There was a small difference of 3 Hz in the modal frequency

between the two readings. A somewhat similar trend can be found in

the other plots as well. It is particularly clear from Figure 36 that

there is a slow and gradual decrease in the damping ratio value from

an atmospheric temperature to cryogenic temperatures. This is in

agreement with some data available in the literature[66].

V

t,r
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V. DAMPING OF BONDED STRUCTURAL JOINTS

Structural adhesive bonding of composites to composites, as well

as composites to metallic components, has developed rapidly due to

advances in composite materials and adhesive bonding techniques.

Structural composite bonded joints are primarily of the overlap type

(single or double overlap). Scarf joints are structurally efficient,

but are difficult or costly to manufacture. Butt joints although

simple to process, are not considered for primary structural joints.

This is because of their limited load carrying capacity due to the

presence of cleavage stresses when the loading is not truly tensile.

Angle joints are not usually preferred but are sometimes necessary.

Tube joints are difficult and costly to manufacture.

The paper by Goland and Reissner [106] is regarded as a classic

work in the area of static analysis of a simple lap Joint. Goland and

Reissner studied the stresses in bonded single lap Joints for two

different cases. In the first case, the bond layer was very thin and

had no contribution to the joint flexibility. On the other hand, in

the second case, the bond layer was so thick that it was the primary

contributor to joint flexibility. In both cases, they derived

equations for evaluating the shearing and normal stresses in the bond

layer as well as those in the Jointed plates. They found for equal

thickness isotropic plates, that the bond layer shear stress has a

nearlyuniform distribution except for large concentrations near the

101
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ends of the Joint. The peel stress (stress perpendicular to the bond

layer) also had high values near the joint edges although not nearly

as high as the inflexible bond case.

In the Goland and Reissner analysis, the peel and shear stresses

were assumed constant across the adhesive thickness. In later works

by OJalvo and Eidinoff [107], Carpentor [108], Kline [109], attempts

are made to incorporate a linear variation of these stresses across

the thickness of the adhesive. Delale and Erdogan [110] have carried

out the stress analysis of a bonded lap joint system assuming that the

adherents are elastic and the adhesive is linearly viscoelastic.

Renton and Vinson [111], and Delale, Erdogan, and Aydinoglu [112] have

attempted to include anisotropic adherents in the mathematical model.

Hart-Smith [113-116] was the first investigator to advocate the

use of continuum mechanics in the analysis of bonded joints. He has

analyzed double-lap, single-lap, scarf, stepped-lap and tapered-lap

configurations. Tensile, compressive and in-plane shear stresses in

the system were considered based on an elastic-plastic analysis of the

configuration. The author has also discussed Joint efficiency and

potential failure modes for each of the above configurations.

The above review indicates that much of the work done in this

area has been confined to the static analysis of bonded Joints.

However, a lot of work has been done in the area of dynamics of

sandwich beams and plates, consisting of a viscoelastic core material

constrained between two elastic layers. The reader is referred to

excellent review articles by Mead [117] and Nakra [118], for more
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information on this subject. Only recently, two papers have been

published on the subject of vibrations of bondedJoints. The one by

Saito and Tani [119], deals with the vibrations of a bonded lap joint

system and the other by Prucz [120] deals with a quasi-static analysis

of a symmetrical double-lap configuration. The analytical model

described by Prucz is similar to the one-dimensional model of Hart-

Smith for the analysis of a fully elastic double lap joint. The

author, however, has incorporated the viscoelastic behavior of the

adhesive layers in the joint. A quasi-static analysis of constrained

layer damping treatment is utilized to evaluate the Joint damping

properties. Saito and Tani [119] have derived equations for

predicting the modal parameters of the coupled longitudinal and

flexural vibrations of a system consisting of a pair of eIastlc beams

lap-jointed over a certain length by a viscoelastic material.

Numerical results are presented for the case of fixed-fixed boundary

conditions at the ends. A simplified version of this model to include

composite beamshas been developed in the present investigation. The

details of this analysis together with numerical and experimental

results are presented in this chapter. Someexperimental results on

the damping of other types of bonded joints are also included in this

chapter.
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Analytical Modelinq of the Flexural Vibrations
of a Bonded Lap-Joint System

The system chosen for study is as shown in Figure 37. The

objective is to arrive at a suitable mathematical model to evaluate

the damping ratios and resonance frequencies of the system for free

flexural vibration. The system consists of a pair of rectangular

beams lap-jointed over a certain length. The bond between the two

beams is achieved by means of an adhesive whose thickness is small

compared with those of the beams. The unjointed ends of the beams may

have any physically realizable boundary conditions, but, in this case

are assumed to be simply-supported. Equations of motion are, first,

derived assuming the beams to be made of composite materials using the

cmnplex modulus approach. The adhesive is assumed to be linearly

viscoelastic and the widely used Kelvin-Voight model is used to

represent the viscoelastic behavior of the adhesive. Both the complex

modulus approach and the Kelvin Voight solid model approach are
y_

identical in that the constitutive relationship between stress and

strain is similar to Hooke's law, but includes a complex rather than a

real material constant. According to this approach, the deformation

field induced in a material by a simple harmonic oscillating load

contains an elastic or storage component, and a dissipative or loss

component. This model is restricted to cyclic oscillations, and is

believed to be closely associated with a simple physical

interpretation of a viscoelastic behavior.
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The starting point for the development of this model is the

consideration of the dynamic equilibrium equations of the overlap

(joint) region. The equations of motion in the joint region are

derived using a differential element approach. The transve÷se

displacements of the upper and the lower beams are considered to be

different. The normal force between each beam and the adhesive layer

is obtained from the Kelvin-Voight viscoelastic model of the adhesive.

The shear force at the interface between the adhesive and the beam is

obtained from the simple bending motion equations of the two beams.

The resulting equations of motion are combined with the equations of

transverse vibrations of the beams in the unjointed regions. These

are later solved as a boundary value problem using a knowledge of the

boundary conditions at the unjointed ends and motion continuity

equations at the ends of the overlap. The eigenvalues and the

eigenvectors of the system are obtained numerically by an iterative

technique using a computer.

Derivation of the Mathematical Model

The system is hypothetically divided into three parts as shown in

Figure 38. The coordinate system chosen for each part is also shown in

the same figure.

Part 1 - Overlap Region

Although, this portion of the system is identical to a three-

layer sandwich beam, the analysis here is somewhat different from that

of a three-layer sandwich beam. This is because, in the vibration
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analysis of a three-layer sandwich beam, the displacements of the

upper and lower beams are usually assumed to be identical. In the

present case, however, the system configuration does not permit the

inclusion of such an assumption. Several other assumptions are,

however, made in the present analysis as follows: a) the analysis is

carried out only for the free flexural vibrations of the system; the

longitudinal and rotary inertia effects are neglected, b) there is no

slip at the bond interfaces, c) all points on a plane normal to the

longitudinal axis of the beam have the same transverse displacement,

d) the longitudinal force in the adhesive layer may be neglected

relative to those forces in the beams, e) since the thickness of the

adhesive layer is small relative to the thickness of the beam, the

mass (inertia) of the adhesive may be neglected, and the normal and

shear forces in the adhesive are assumed to be constant.

A free-body diagram of a differential element of length dx of the

composite three-layer part of the system is shown in Figure 39. N is

the axial force in the beam, V represents the shear force in the

beams, M is the bending moment in the beam, s is the shear force per

unit length at the bond interfaces, and p is the transverse force per

unit length between the beam and the adhesive. The above quantities

with subscript 1 refer to the upper beam and subscript 2 refer to the

lower beam. Furthermore, Yl = Y1(x,t) is the transverse displacement

of the upper beam, and Y2 = Y2 (x,t) is that of the lower beam.
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The sum of forces in the x-direction on beams 1 and 2 yields,

8NI

NI + a-x--dx - Ni + sdx = O, and (5.1)

8N:

N: + _ dx - N: - sdx : 0. (s.2)

v

V

V

i,#

b

Equating the sum of forces in the y-direction to the corresponding

inertia forces, we get for beam 1,

8VI 8:Y l

-Vi + Vi + _ dx + pdx = PiA_dx St--T , (5.3)

and for beam 2

8 V: 8: y:

-V: + V: + _ dx - pdx = ?:A=dx at---T (5.4)

The term pA in Equations (5.3) and (5.4) is the mass per unit length,

with # representing the density and A representing the cross sectional

area of the beam.

edge, for beam 1,

MI - (Ml + _ dx) - sdx _ + Vzdx : 0 ,

Summing the moments about the center of the right

aM_ h_ (5.5)

for beam 2,

8M: h:

M= - (M: + _ dx) - sdx + V:dx : 0 . (5.6)

The simplified versions of Equations (5.3) and (5.4) are:

8Vi 8: Yl

8--x + p : ?IAI 8t'--T ,

8 V: 8: y:

8-_- p = ?:A= 8t_ .

(5.7)

(5.8)
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Differentiating Equations (5.5) and (5.6) with respect to x, and

simplifying we obtain,

8V I 82M_ h, 8s

a-_: 8-_ + _- a_ ' (5.9)

and

8V= 021_ h2 8s
a-_: o7 + _ a-_• (5.1o)

From Equation (5.7) through (5.10), we have,

V

i

ff

and

8:M, hI 8s 8:y I

ax--T + 2 8--x + p : #fAt at: ' (5.11)

a:M= h: as 8:y:

8x: + 2 8x P : p:A= at: • (5.12)

Equations (5.11) and (5.12) represent the equations of motion of the

upper and lower beams respectively. From the classical theory of pure

bending of beams, the bending moments M_ and M= may be related to the

corresponding transverse displacements, y, and y: through the flexural

rigidity term El, where E is the Young's modulus of the material of

the beam, and I is the second moment of the cross-sectional area with

respect to the centroidal axis. Noting that the y-axis is positive

downwards, from beam theory,

a: y, 8: y:

M_ = - E_I_ ax: and M: = -E=I: 8x: " (5.13)

It should be noted that Equation (5.13) is valid for elastic,

homogeneous beams having a constant area of cross-section. It turns



v

v

v

v

V

fi

III

out, however, that an equation similar to the above can be written for

the composite beams of the present problem, by simply replacing the

real modulus by its complex counterpart. This analysis is valid only

for harmonic time dependence [10]. With this in mind, we can write,

* d_ Yl '* d2
M_ = - E_ I_ , and M: = - E: I= Y' , (5.14)

dx_ dx2

where EI : EI (1+law), and F_= : F_=(l+iflw). (5.15)

and fl are some constants to be assumed depending on the material,

m

and _ is the frequency, and i = 4-1. The next objective is to find

suitable expressions for p and s in terms of y_ and Y2, so that

Equations (5.11) and (5.12) can be solved.

Expression for p

As mentioned before, the adhesive layer is modeled as-a Kelvin-

Voight viscoelastic solid, because of the mathematical simplicity. A
i

detailed derivation of a standard-linear model for a viscoelastic

material and its reduction to a Kelvin-Voight model is shown in

Appendix B. Accordingly, we can write,

8y I By=

p = K (y_-y:) + c (_-_ 8t )" (5.16)

K refers to the transverse stiffness per unit length, and c is the

viscous damping coefficient. K may be related to the storage modulus

Ec, the width b, and the thickness hc of the adhesive by, K = Ecb/h c.
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Expression for s

The interfacial shear force s may be found by considering a small

element of the viscoelastic layer as shown in Figure 40.

The element is deformed due to the axial displacements, ua and u2

of the bonded surfaces of beams 1 and 2 respectively, caused by their

bending moments. For small displacements, the shear stress _, is

related to shear strain in the adhesive by:

ua- 0

¢ : Gc{ -_c } + 7 at hc " (5.17)

v

The expression on the right hand side excluding Gc is the shear

sti'ain. Gc is the real part of the shear modulus of the adhesive

material. As before, 7 is another constant which is included here to

i_ake care of the viscoelastic nature of the adhesive°
s

Assume that the axial deformations, uI and u2 are caused only by

/

•the bending of the beams and that there are no external axial forces

in the beams. Then, from the classical theory of pure bending of

beams, it can be shown that,

hl 8YI h2 _Y2 (5.18)
u1= 2 Ox ' and u2= 2 8x

v

,'/
sr

Figure 40.
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In deriving the above expressions, it is also assumed that the neutral

axis of the upper beam always remains above that of the lower beam.

Then,

hl OYl h20Y2 (5.19)

u_ - u2 = 2 8x 2 8x

From Equations (5.17) and (5.19), the interfacial shear force per unit

length s is given by

Gcb ay I ay: a ay I By:

s = _ [ (h1_-_ + h:_-_ ) + 7 _ (h_-_ + h:_ )].
(5.20)

It is interesting to note here that for a simple harmonic time

dependence of the form, ei_t for Yl and y:, Equations (5.16) and

(5.20) can be written in a more familiar form as

p = Kc [yl-y:], and (5.21)

Gcb dy I dy:

s :_cc [hl _ + h: _-_ ],
(5.22)

- * CW *

where, Kc = K(I + i _- ), and Gc = Gc (I + iTw). (5.23)

Kc and Gc may be considered as the complex stiffness and complex shear

modulus of the adhesive material respectively.

The next step is to obtain the final form of equations of motion

(5.11) and (5.12) by making use of the relations developed so far for

MI, M:, p and s. This is easily done by noting that Yl = YI eiWt, and

y: : Y: eiWt, where Y_ and Y: are now functions of x only. w is the
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complex natural frequency, the real part wR representing the damped

natural frequency and the ratio of the imaginary part _I to WR

representing the modal loss factor _/. The modal damping ratio £" is

simply equal to 7//2. Now, from Equations (5.11), (5.14), (5.21) and

(5.22), we obtain for the upper beam:

9k

* d4 YI G bh I d: YI d: Y: .

E,I I _ 4h c [hl dx= + h=--a_T ] + Kc (Y_-Y=) - #_A_=Y_ : O,

(5.24)

and, similarly from Equations (5.12), (5.14), (5.21)and (5.22), we

get for the lower beam:

dr Y2 Gcbh2 d2YI d=Y2 ,

E=I= _-_ 4hc [h_ dx--T + h2 x_ ]- Kc (Y_-Y=) - P2A=_2Y2 : O.

(5.25)

Here, Y_ : Y_(x) , Y: : Y:(x).

Equations (5.24) and (5.25) are coupled equations of motion of the

system, the solution of which can be obtained by assuming a solution

_n x _n x
of the form Y_ : Ane , and Y: = Bn e .

Non-dimensi onal i zati on

The above equations of motion (5.24) and (5.25), should be

expressed in a non-dimensional form so as to avoid overflow problems

on the computer during the solution scheme. This is done in this
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section for the special case in which the two beams are assumed to be

identical.

Let EI = E2 = E, and hI = h2 = h. The following non-dimensional

parameters are used:

v

71 Y1 Y2 _ : X _ = Z (5.26)= | 72 = ' r _ U

_ "L L

where L : _ + _'c' _ : length of the beam and _'c = length of the

adhesive layer.

Also, let

Gc Ec h _'c
Gc :_-' Ec :F' _':'C' Zc :F"

The non-dimensional natural frequency is expressed as

(5.27)

w E1

= Wo' where w_ = #AL----4 . (5.28)

Using, Equations (5.26) through (5.28), Equations (5.24) and (5.25)

written in non-dimensional form are:

d_71 3Gc d: 71 d: Y2 12 Ec
[--+_]+--

dx-_ .t "tic d_2 d_= .tc .t_

and

(71 -¥:) -": YI : o, (5.29)

d'_ I 3Gc d:¥ I d2T2
[--+--]

dx--4 h .tc dx= d_2

_. Ec (l+i_/:)

Here, Ec : _,(1+i_i) , and Gc :

12 _

_c (7_ -72) -_
.tc_'

Gc (1+i7/_)

E(1+i_) "

Y: = O, (5.3o)

(5.3z)
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_/i may be considered as the modal loss factor of the beam material,

and _: and 73 as the modal loss factors of the adhesive material in

bending and shearing motions respectively. _, _: and 7z may be

assumed suitably depending on the material, while computing the

eigenvalues and eigenvectors for each mode.

As mentioned before, Equations (5.29) and (5.30) can be decoupled

by a series solution of the form

kn_ Xn_
YI = Ane , and _: : Bn e , (5.32)

where An and Bn are constants to be determined from the boundary

conditions.

Substituting Equation (5.32) in (5.29) and (5.30), we obtain,

3Gc

I_ "_c

[ X_ An + _ Bn]

12E c
. _ [Bn_An ] _ _2 An = 0

hc h3

(5.33)

V
3Gc 12E c

k_ Bn [ )_ An + )_ Bn] [Bn_An ] _ _2 Bn : 0

The above equations written in a matrix form:

(x_ - c1_ + c: - ;:) - (CI +C:)
w

An

-(Ci+ C:) (x_ - c,x_ + c: - ;2) B n

(5.34)

(5.35)
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3 Gc 12 Ec
where, CI = , C: =- . (5.36)

fic I_ I_c I_'

For a non-trivial solution, the determinant of the above matrix set

equal to zero yields eight roots of _, i.e.,

(X_ - CIX _ + C: - ;:): - (CI + C:): = O. (5.37)

This can be simplified as

and

(X_ - CIX_ + 2 C: + C, - _:) : 0 (5.38)

(x_ - clx_ - _: - ci) . o . (5.3g)

Equations (5.38) and (5.39) each yield four unique roots for X.

Furthermore, from the above matrix, the constants An and B n are

related by:

Bn : _n An'

where,

i_n = [ C_ + C:

Finally, we have

] . (5.40)

8 _n_
YI = [ An e

n:l
(5.41)

and

v



v

i
118

8 ),n _
?= = _. _nAn e . (5.42)

n=l

Equations (5.41) and (5.42) now have only eight constants to be

determined by applying the boundary and continuity conditions as

described later in this chapter.

Analysis of Parts 2 and 3

The differential equations of motion for the transverse vibration

of the beam portions of the system as shown in Figure 38 are:

8_Ybj 82 Yb-J'- 0

Dj 8x_ + pjAj _T : ,
j = 1,2. (5.43)

For the special case of identical beams,

Dz = D: = E I, and PzAI = P:A: : pA.

Assuming Ybj = Ybj (x) eiut' J=1,2, Equation (5.43) becomes

d_ YbJ. _I
dx_ - ( ) _: YbJ = O, j = 1,2.

i

(5.44)

In non-dimensional form,

V - (_ Ybj = O, j = 1,2 .
(5.45)

The solutions of the above equations are obtained, as before by

assuming a series solution of the form:
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"Ybl :ii=l Cn e#nx , and 7b2 :ii:l Dn e#nx '
(5.46)

where #_ : _2 , and Cn and Dn are constants to be found from the

boundary conditions.

Equations (5.41), (5.42), and (5.46) have 16 unknown constants. The

following boundary and continuity conditions are applied to determine

those constants and to obtain the frequency equation.

Boundary Conditions

Considering simply-supported boundaries at the un-jointed ends of

the two beams, at points I and 2 (see Figure 41 ), the transverse

di'splacement and bending moment are zero.

I ."!

Ybl

x 4A_

3,L'>x }n _>Z

_Y2 _Yb2

Figure 41. Illustration of the Locations of Boundary and Continuity
Conditions
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i.e., a) at _I = O,
d2Yb

Ybl = O, and I = O, (5.47)

V

A_Vm

b) at _: = _, ¥b2 : O, and __2_ O. (5.48)
dx_

Next, points 3 and 4 are free ends. Hence, the bending moments there

are zero. Furthermore, the shear force at these points can be

obtained from Equation (5.22). Hence, we obtain,

= =
V

c) at _ : 0 (point 3),

6% dr,
d:Y, O, and _ [ + ] (5.49)
d_= d_ _ }_= d_ dx

d) at _ : [c (point 4),

d:¥ l d3Y I 6Gc d¥ I dY:
= O, and : _ [--+-- ] . (5.50)

dx-= d_ s _: d_ dx

Continuity Conditions

Referring to Figure 41, at points A and B, we equate the

displacements, slopes, bending moments, and shear forces for the two

hypothetical sections of the beams. These are mathematically

expressed as:



121

At _i = _- and x : 0 (point A),

7, : Ybl '

V

d?, dTbl

dx d_ 1

(5.51)

el: 71 d: 7 b I

dx 2 d__

d3 71 d3 Yb I .

v

m

At x: = 0 and x : _c

72 = Vb2 ,

(point B)

v
d72 dYb2

(5.52)

V

d: Y-= d: 7b2

dx: d_

d_7= d3¥b2

d_ 3 d_

V
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Equations (5.47) through (5.52) yield 16 equations containing the 16

unknowns, viz., At, A=, . . . As, CI, C2 . . . C4, and DI, D2, . . D4.

These equations can be expressed in matrix form as:

m- _ - '

16 x 16

complex matrix

D

A 1

A8

Ci

C4

D1

D_

: o . (5.53)

The elements dij of the matrix D can be written in groups as follows:

1) dij --0 for i = I ... 4 and j = 1 ... 8

i = 1,2 and j = 13 ... 16

i = 3,4 and j : 9 ... 12
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and J = 9 ... 16

i = 9 ... 12 and J = 13 ... 16

i = 13 ... 16 and j = 9 ... 12

2) dij = I for i = I and j = 9 ... 12

for i = 9 and J : 1 ... 8

dij : -I for i = 13 and j : 13 ... 16

3) d2j : _-8 for

4) d3j : e#j-12Z for

j:9...12

j : 13 ... 16

v

f,.,

5) d4j : _-12 d3j for j = 13 ... i6

6) d5j : i_j_ for j.: I ... 8

7) d6j : Ei_jX_
6Gc

h2
(1+_j)_j] for j : I ... 8
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8) d7j : k_ e>'j_-c for j : I ... 8

6Gc )'j_c

9) d8j = Ex_] - _T (I + _j)>,j]e for j : I ... 8

I0) dlo j = _j for j : I ... 8

11) dll j = ),_
for j = I ... 8

12) d12 j : :k_ for j = I ... 8

)'j_'c

13) d13 j : i_je for
j:l ...8

14) d14 j = Xjd13 j for j : I ... 8

15) d15 j : ;k_] d13 j

)'j_-c
16) d16 j = e d6j

for j : 1 ... 8

for J = I ,.. 8
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17) dgj = - e_j-8_- for j = 9 ... 12

18) dlo j : #j_8d9j for J : 9 ... 12

19) dli j - __8dgj for j : 9 ... 12

20) d12 j : __8d9j for J : 9 ... 12

21) d14 j : - #j-12 for J = 13 ... 16

22) d15 j : - _-12

23) d16 j : - _-12

for j = 13 ... 16

for J = 13 ... 16

The determinant of the above matrix D, set equal to zero gives the

frequency equation, i.e., for a non-trivial solution,

Det [D] 16x16 = O. (5.54)

The roots of Equation (5.54) yield the complex natural frequencies

(Wns) of the system.

Wnj = WRj + i Wlj'

where j = I, 2, . . . represents the mode number.
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WRj = modal resonance frequency, and

wlj
= _ = modal loss factor.

_/j WRj

Once the eigenvalues are evaluated, the corresponding eigenvectors

needed to plot the mode shapes can be found by using any 15 of

Equations (5.53) with one arbitrary constant.

Solution Procedure

The solution of Equation (5.54) was obtained numerically on a computer

using an iteration method. A computer program has been developed on a

Harris 800 system to obtain numerical solutions.

The complex eigenvalues (wR + i wi) are solutions of the complex

equation

S

DR(_ R + i_i) + i DI(_ R + i _i ) : O, (5.55)

where DR and DI are the real and imaginary parts of the determinant of

the matrix D. The inputs to the program are the material constants

and relevant geometric quantities expressed in non-dimensional forms,

f.:
i

namely, h, hc, Ec' Gc' _/l, _/2 and _/3- The solution procedure is as

follows: Choose some initial value of w, and compute the roots of p_ =

_2, and also find all of the %n by solving Equations (5.38) and

(5.39). Construct the 16x16 complex D matrix and check to see whether
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V

Equation (5.55) is satisfied. If not increment w and repeat the

entire process till a zero crossing for the value of the determinant D

is obtained.

The solution for the undamped system (i.e., DR(WR) = O) is a good

starting point for numerical iteration. This solution can later be

used as an approximate solution for, DR(WR+iO) + i Di(w R + iO) = O,

and iteration is carried out by a bracketing method to arrive at the

complex eigenvalue.

I/

Numerical Results and Discussion

The length and thickness of the graphite epoxy beams chosen here

for study were: __ = 12.25 cm and h = 0.25 cm. The storage modulus of

the beam material as supplied by the manufacturer was 124 Gpa. The

material loss factor of the beam was taken as 73 = O.O04,;which was

assumed to be a constant for all the modes. This corresponds to a

damping ratio of 0.2% and is believed to represent closely the

material damping of the graphite epoxy material as found from various

experiments described previously in Chapter 3. The thickness of the

adhesive layer was taken as 0.5 cm. The complex modulus of the

adhesive material, which is epoxy resin in the present case;was

assumed to be 4(1+i0.04) Gpa which has a real part of 4 Gpa as

supplied by the manufacturer. The complex shear modulus of the

adhesive is assumed to be 1.4(i+i0.04) Gpa. Here 72 = 7s = 0.04,
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which corresponds to a constant damping ratio of 2% for the epoxy

material.

The above quantities expressed in non-dimensional form were used

in the numerical computation of the eigenvalues and eigenvectors. The

ratio of the length of overlap to the beam length is called the

overlap ratio. The Numerical results were obtained for overlap ratios

of 0.2, 0.4, 0.6, and 0.8. Figure 42 shows the variation of natural

frequency with overlap ratio for the first three modes of vibration.

From this plot, it is clear that the natural frequency of the system

increases with an increase in the overlap ratio for all modes. Figure

43 is a similar plot showing the variation of the system damping

(total loss factor of the system) with overlap ratio. For the case of

overlap ratio = 0.2, the non-dimensional frequencies _ are: 2.86,

13.12, and 27.24 for the first three modes. The corresponding system

damping ratios are _, = 0.534%, _2 : 0.120%, and _z = 0.054%. It

should be noted that the above values were obtained by assuming

constant values of 0.2% and 2.0% for the material damping of the beam

and the adhesive respectively. It is seen that, for this case, the

system damping is higher than the material damping of the beam only

for the first mode. For the other two modes, the system damping ratio

appears to be lower than the material damping of the beam. This

observation, however, is true only for the above case and cannot be

generalized. To substantiate this point, let us consider a different

case in which the damping ratio of the adhesive was assumed to be 5%,
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and the material damping of the beam was kept the same. The system

damping ratios computed for this case are: _I : 1.66%, _: : 0.33%, and

S-_ : 0.16%. There were no significant changes in the natural

frequencies of the system. As can be seen, the system damping ratios

in this case are totally different from the previous case considered.

Hence, in order to predict the system damping ratios, using the

present model, accurate knowledge about the material damping ratios

(of the beam and adhesive) and their dependence on frequency is

mandatory.

Figures 44 through 46 show the predicted mode shapes of the first

three bending modes for different overlap ratios. These were obtained

by solving the homogeneous algebraic Equations (5.53) for each

ei genval ue.

}

-- l



v

V 130

r_

7,

'/

V

O.90

O.80

0.70

0.60
_q
4-'

rr o._

0.20

O.iO

0

| --- __ - • mm _

--'_--- P,,+lc,de 3

w

• .. l L ) •

0,,4 0,,6 0.8

Figure 42.

Overlap Ra_o

Plot of Natural Frequency vs. Overlap Ratio

m



131

V

7O

K.

Lu

m 42

m

7

0

-+- Mode 1

Mode2 /

I ! [ I
0.2 0_¢ 0.6 O_

Overlap Ratio

Figure 43. Plot of Damping Ratio vs. Overlap Ratio



132

Figure 44. Theoretical Mode Shapes For Mode 1
_J
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Figure 45. Theoretical Mode Shapes for Mode 2
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Figure 46. Theoretical Mode Shapes for Mode 3
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Comparison with Experimental Results

Table 5 shows both theoretical and experimental results of two

graphite epoxy lap joint systems with overlap ratios of 0.2 and 0.5.

All of the theoretical results were generated by considering simply-

supported boundary conditions at the ends.

Table 5

Comparison of Theoretical and Experimental Results of the
Graphite Epoxy Lap Joint Systems

Overlap

Ratio

Mode No.

Natural Frequency(Hz) Dampi ng Rati o (%)

Theory I Expt_ %Error Theory I Expt_ Expt_

V

0.2

I 195.9 207.0 5 0.53 1.51 0.20

2 898.5 986.2 9 0.12 1.63 0.16

3 1864.5 1984.0 6 0.05 2.29 0.10

0.4

1 263.5 270.6 3 0.13 0.68 0.43

2 1148.4 1075.5 -6 0.15 1.43 0.12

3 2492.7 2684.4 7 0.20 0.83 0.15

Iusing Simply-Supported boundary conditions

2Using Free Free boundary conditions.
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The specimens were prepared by bonding two similar graphite epoxy

beams over the desired length of overlap using an epoxy adhesive. The

epoxy resin was procured from CIBA-GEIGY Corporation. Much care was

taken to obtain a good bond by properly curing the joint system in an

oven. The dimensions of the unbonded beams were: length = 12.25 cm,

width = 2.8 cm, and thickness = 0.25 cm. These dimensions and the

material constants (Young's Modulus and Shear Modulus) were input to

the computer program to predict the theoretical natural frequencies,

modal damping ratios and mode shapes.
I

The supports to simulate simply-supported boundaries at the ends

were specially fabricated in the form of two separate triangular

blocks with a knife edge on each, to support the beam, one from the

top, and the other from the bottom. The two blocks were then clamped

to a rigid base. In order to evaluate the experimental simulation of
z

these supports, a trial test was first conducted on an aluminum beam.

Excellent agreement was obtained between the theoretical natural

frequencies (computed using simply-supported boundary conditions)

andmeasured values. In fact, the percentage difference between the

two results never exceeded 2% for the first four modes. Having

established the validity of the above text fixtures, experiments were

later conducted on graphite epoxy lap-jointed beams. An impact hammer

with an attached force transducer was used for exciting the specimen

and the response was measured using a mini-accelerometer (Bruel &

Kjaer 4375). The frequency response (ratio of acceleration to force

signals) was immediately computed and recorded on an FFT analyzer

V
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(Bruel & Kjaer 2032). The modal parameters were then computed using

the Structural Measurement Systems (SMS) modal analysis software.

Referring to Table 5 it is seen that there is good agreement

between the predicted values of natural frequencies and experimental

data. The percentage difference between the two results is in the

range of 3 to 9%. The measured damping ratio values in column 7

(Table 5) are larger than the predicted values. This is presumably

due to additional damping contributions at the end supports in the

experimental data. In order to substantiate this, damping

measurements were made on the same samples without the end fixtures.

Column 8 of Table 5 shows these results. In this case, testing was

done by simply mounting the sample directly on a shaker using a thin

layer of wax. The resonance frequencies in this case were, of course,

somewhat different from those obtained previously using the simply-

supported boundary conditions. It is interesting to notice, however,

that the predicted damping values in column 6 and the measured data in

column 8 are of the same order. Next, theoretical mode shape is

compared with experimental mode shape in Figures 47 for mode 1. Note

that no attempt has been made to normalize the different amplitudes in

the theoretical and experimental results. There is excellent

agreement between the two mode shapes for the first mode as seen in

Figure 47. The small discrepancies in the two results can be

attributed to several assumptions made _n the theoretical analys_s.

The major assumption is the use of a constant value with frequency of

vibration for the modulus of the beam material. Also, in the
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theoretical model it was assumed that the adhesive is flexible and

that the damping is caused by both shering and transverse motions of

the adhesive. In practice, however, it is very difficult to fabricate

specimens to satisfy exactly the above requirements.

f/

V
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v

Experiment

v

Figure 47. Comparison of Theoretical and Experimental Mode Shapes for
Overlap Ratio = 0.2, Mode I
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Experimental Study of Damping of Bonded
Double-Butt Joint Specimens

This section contains the results of experiments conducted on

beam and jointed specimens in a vacuum chamber. Damping measurements

were made on the following ten graphite epoxy samples which were

procured from Sikorski Aircraft Company:

i) Five identical graphite epoxy beam specimens with a double-butt

joint in the middle as shown in Figure 48 and ii) Five identical

graphite epoxy beam specimens of dimensions as in 1 but with no

joints.

V

• _ _C)_ _

All dimensions in cm,

Figure 48. Double-Butt-Jointed Specimen
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In each of the above experiments, the specimen was mounted at its

center directly on the shaker using a thin layer of wax. This closely

simulated free-free boundary conditions at the edges. Only odd

numbered modes were excited, since the specimen was mounted at the

center, which happens to be a node point for all even numbered modes

for free-free boundary conditions. All the damping measurements were

made using the usual improved half-power points method.

First, measurements were made on the double-butt-Jointed (DBJ)

specimens. In each case, the specimen with the shaker was kept inside

the vacuum chamber and damping ratios and resonance frequencies were

measured for the first and third mode of vibration, before the air was

pumped out. Then the measurements were repeated in a vacuum when the

pressure inside the chamber was about 0.I mm of Hg. The test

temperature remained ambient in both cases. Table 6 shows a summary

of results for the five DBJ specimens tested under vacuum _onditions.

No significant change in the values of the damping ratio was noticed

between the experiments conducted under normal atmospheric pressure

and in a vacuum. This difference in the values of the damping ratio

was in fact in the range of 0.01-0.02% during most of the trials.

From Table 6, it is seen that the average value for the damping

ratio of the DBJ specimen for the first mode is 0.114% and that for

the third mode is 0.155%. The small discrepancies in the values of

the resonance frequencies in the five samples could be attributed to

a) slight differences in their dimension and/or b) slight differences

in the exact location of the excitation point during mounting.
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The next set of experiments was conducted on the five beam

specimens with no Joints (having the same dimensions as the DBJ

samples) under identical environmental conditions as maintained with

the DBJ specimens. The results are tabulated in Table 7. Here, it is

seen that the beam has an average value for the damping ratio of

0.107% for the first mode and 0.138% for the third mode.

By comparing the results of Table 6 and 7, it is seen that,

although the damping ratio values for the jointed specimens appear

somewhat higher than those of the beam specimens, this difference is

very small. This observation is also true for the previous damping

results of lap-jointed specimens with free-free boundary conditions.

Much care was exercised in maintaining identical environmental

and other conditions in all of the above experiments. The damping

measurements were made precisely by zooming in on each mode thus

increasing the frequency resolution of the analyzer and minimizing the

influence of external noise. Figure 49 is a plot of the frequency

response data for a DBJ specimen for baseband excitation in the

frequency range 0-1.6 kHz. The corresponding zoom frequency response

plots for modes 1 and 3 are shown in Figures 50 and 51 respectively.

Figures 52 through 54 show similar baseband and zoom frequency

response plots for a beam sample.
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Tabl e 6

Experimental Results of Double-Butt-Jointed Specimens

Sample No. Mode I Mode 3

f_Hz) £'n (%) fn (Hz) &'n (%)

1 258.2 0.11 1371.2 0.14

2 257.0 0.10 1375.9 0.13

3 260.0 0.13 1381.7 0.17

4 256.3 0.I0 !368.5 0.17

5 261.3 0.12 1380.1 0.16

Average 258.6 0.11 1375.5 0.15

LJv

Table 7

Experimental Results of Beam Specimens with No Joints

Sample No. Mode I Mode 3

f_Hz) &'n (%) fn (Hz) _n (%)

1 341.1 0.II 1800.0 0.15

2 337.3 0.13 1782.2 0.15

3 340.5 0.II 1794.3 0.12

4 330.4 0.Ii 1749.2 0.12

5 334.5 0.i0 1759.0 0.15

Average 336.8 0.11 1778.9 0.14
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B0.0

CdBJ

G0.O
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20,O

O.B • .

O F'REOUENCY- (Hz] 1600

Figure 49.

OO.O

4G.0

20.B

Frequency Response Plot of the Double-Butt-Jointed

Specimen Using Baseband Analysis

2BO FREOUENCY- (Hz] 400

Figure 50. Frequency Response Plot of the Double-Butt-Jointed

Specimen Using Zoom Analysis for Mode I

BO.B

(dB'l

G0.0

40.B

20.0

0.0

I_gB

Figure 51.

I

i

FREQUENCY- (Hz] 14G_

Frequency Response Plot of the Double-Butt-Jolnted

Specimen Using Zoom Analysis for Mode 3
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Figure 52.
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{dB3
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5B.B
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Figure 53.

9B.B
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5e.e

3e.0

FREOUENC¥- CHz] , 32._1a

Frequency Response Plot of the Beam Specimen Using
Baseband Analysis

FREOUENCY- tHz] 408

Frequency Response Plot of the Beam Specimen Using
Zoom Analysis for Mode I

/

FREOUENCY- CHz] ]88e

Figure 54.. Frequency Response Plot of the Beam Specimen Using

Zoom Analysis for Mode 3
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In this project an attempt has been made to evaluate the damping

capacity of graphite epoxy materials and structural joints. The

project wasspons-_'-"="'= ored by the NASA George C. Marshall Space Flight

Center, Huntsville, Alabama under contract No. NAS8-36146. The work

involved a systematic investigation of the damping ratio of different _>cic:

composite specimens and bonded joints_nder normal atmospheric

conditions and in a vacuum environment. Free and forced vibration test

methods were employed for measuring the damping ratios. The effect of

edge support conditions on the damping value of a composite tube

specimen was studied by using a series of experiments performed on the

specimen with different edge supports. It was finally:found that

simulating a free-free boundary conditions by having no constraints at
%

the ends gives the lowest value of the material damping of the

composite. The accuracy of the estimation of the damping ratio value

was improved by using a curve-fitting technique on the response data

obtained through measurement.

The effect of outgassing (moisture desorption) on the damping

capacity was determined by measuring the damping ratio of the tube

specimen in a vacuum environment before and after outgassing had

occurred. The effects of high and low temperatures on the damping was

also investigated by using a series of experiments on tube and beam

specimens. Special ex]_er_l set-ups were developed to accomplish

146
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-this objective_ An analytical model to study the vibrations of a

bonded lap joint system was formulated. Numerical results were

generated for different overlap ratios of the system. These were

compared with experimental results.

In order to determine the influence of bonded Joints on the

material damping capacity, experiments were conducted on bonded lap-

jointed and double-butt-jointed specimens. These experimental results

were compared with simple beam specimens with no joints._

The following conclusions may be drawn from the results of this

investigation.

I) The damping ratio value is strongly dependent on the end support

conditions used to support the specimens. It was observed that

the end fixtures usually offer a large contribution to the damping

capacity of the material.

2) The material damping ratio value of the composite tube is in the

range of 0.1% - 0.15% for a frequency range of 500 Hz to 560 Hz

under normal atmospheric conditions. The first bending mode of

the specimen occurs in this frequency range. The damping ratio

value seems to increase with higher modes and has a value of about

0.36% for a modal frequency of about 2840 Hz.

3) From the experiments conducted on the tube specimen in a vacuum,

it may be concluded that the contribution of air damping to the

material damping is between about 0.03% and 0.04%. The material

damping ratio of the tube specimen in a vacuum is thus in the

range of 0.06% and 0.11%. The effect of outgassing or moisture
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desorption on the damping ratio value of the specimen is not very

significant. The change in damping ratio value due to outgassing

of the tube specimen for a period of about one month was observed

to be 0.016%. The percentage change in the weight of the tube

from its original weight was 0.9%. No significant change in the

damping ratio with the vacuum pressure inside the chamber was

observed.

It is observed that changes in temperature have a significant

influence on the damping capacity of the composite material. From

the experiments conducted on tube and beam specimens, it is

observed that the damping of the material increases with

temperatures above the atmospheric temperature and has a value of

about 3% near the materfal glass transition temperature. There

is, however, a small decreasing trend in the values of the damping

with temperatures below the normal atmospheric temperature. This

is in agreement with the data available in the literature on other

types of composite materials.

The analytical model described in Chapter 4 can be used to predict

the natural frequencies and the modes shapes of a bonded lap joint

system for free vibration. The model can also be used to predict

the system modal damping values by properly choosing the material

damping values of the beam and the adhesive. Good agreement

between numerical and experimental results for the modal

frequencies and mode shapes was obtained. The percentage
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differrence between the values of the theoretical and experimental

natural frequencies is in the range of 3 to 9%.

From the numerical and experimental results obtained on lap-

Jointed beams, it is clear that the natural frequencies of the

system increase with an increase in the length of overlap.

The increase in the value of the damping ratio due to the presence

of bonded joints in the system does not appear to be very

significant.
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VII. RECOMMENDATIONS FOR FUTURE WORK

The material damping of the graphite epoxy specimens determined

so far appears to be very low. This low value of damping may result

in a significant truss system displacement amplitude of the telescope

truss system, which, in turn may lead to a blurring of the optical

system image. The total truss system damping, of course, will be be

slightly higher because of the effect of the joints. But the precise

effects of the bonded joints on the system damping is not known.

Unbonded joints are known to provide significant contributions to the

damping. More work is thus needed in this area to determine if the

bonded joints can be relied on to increase the value of damping. This

work should include both analytical and experimental work on other

types of joints as encountered in space structures. Some of these

joints are tubular joints, bolted joints etc. Typical configurations

of tubular joints are shown in Figure 55.

Another area which needs attention is the dependence of damping

with frequency. The material damping at very low frequencies must be

determined since many large space structures are found to possess very

low fundamental resonance frequencies which are generally less than

about 10 Hz. The dependence of damping with displacement amplitude is

also important when the system vibrates at such low frequencies.

The study on the effect of moisture content on the damping

capacity of these materials is not complete in many aspects. The

150
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moisture absorption and desorption capacity of these materials is not

well known. The percentage moisture content of the material with

respect to time, and the exact glass transition temperature need to be

determined. The moisture absorption capacity of these materials is

expected to be different if the material is soaked in water or exposed

to humid air. These two approaches are expected to produce entirely

different results. It is thus important to examine both the

approaches in the future to determine the exact influence of moisture

absorption and desorption on the damping capacity of these materials.

Work is also needed in the prediction of damping of the graphite

epoxy material. Some work has been done by other investigators in

predicting the damping of laminated composite plates using a finite

element approach. There is a considerable scope for research in this

area.

i'/
t
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APPENDIX A

ILLUSTRATION OF THE CURVE-FITTING TECHNIQUE

_w

f_

154



V ILLUSTRATION OF THE CURVE-FITTING TECHNIQUE

The half-power points method of estimation of the damping ratio is

not always accurate, it relies on how well one can read the frequency

values for the half-power points from the frequency response data. it

is seldom possible to estimate the half-power points without making any

interpolation in the frequency values. The curve-fitting technique

described in Chapter 2 can be used to overcome the above problem with

the half-power points method. In the curve-fitting method, the entire

data near a resonance are used for the estimation of the damping ratio,

as opposed to three points in the half-power points method. Thus, a

more accurate estimation of the damping ratio can be obtained. This

method has been found to be especially well-suited and more accurate

than the hal f-power points method for the case in which the frequency

response curve is contaminated with noise. _-

In the present illustration, the damping ratio of the tube specimen

was estimated by both the methods and the results are compared. In the

curve-fitting technique, all three quantities, namely, the magnitude,

"the real part, and the imaginary part of the receptance function were

utilized separately to estimate the damping ratio value. Figure 56

shows a comparison of the plots for the magnitude of the frequency

response function obtained from both the measurement and the curve-

fitting algorithm. Figures 57 and 58 show similar plots for the real

part and the imaginary part of the frequency response function. All
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these data are for the tube specimen with a half ring as the connecting

element. It may be recalled that the damping ratio value for the data

using the half-power points method is 0.130% and the resonance

frequency is 552.50 Hz. Now, using the curve-fitted response the

damping ratio is estimated to be 0.128% and the resonance frequency to

be 551 45 Hz From the real part of the receptance curve using _

curve-fitting method the damping ratio value is estimated to be O_12g&

and the resonance frequency to be 551.36 Hz. From the imaginary part of

the frequency response function and the curve-fitting method the

damping ratio value is found to be 0.121,% and the resonance frequency

is 551.63Hz. All of the above results are summarized in Table 8. It

is clear that there is excellent agreement in the results from the

different approaches used.

• In the present illustration the measured frequency response curve
3 =

is close to an 'ideal' response plot of a single degree of freedom

system. It shows a well-defined peak and the frequency range-chosen is

small. It was thus possible to easily locate the resonance frequencies

and the half-power points. Hence, the damping ratio estimated from the

half-power points agrees well with that of the curve-fitting method.

But, in cases where the frequency response curve is not so 'ideal' as

in the present case, it is always advantageous to estimate the damping

ratio value using the curve-fitting method than the half-power points

method.
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Comparison of Damping

Table

Data from

8

Different Estimation Methods

Curve-fitting data Measured data

V

From magnitude
plot of
receptance

From real part
plot of
receptance

From imaginary
part plot of
receptance

From half-

power points
method

Damping
ratio 0.128% 0.129% 0.121% 0.130%

Resonance

frequency
(Hz)

551.45 551.36 551.63 551.50
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APPENDIX B

EQUATION OF MOTION OF STANDARD LINEAR

SOLID MODEL

v

l
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EQUATION OF MOTION OF STANDARD LINEAR SOLID MODEL

The standard linear solid model is shown in Figure59 (a). It

consists of a series combination of an elastic spring KI, and viscous

dashpot c, connected in parallel with another elastic spring K. When

KI approaches infinity, the standard model reduces to the well-known

Kelvin-Voight model as shown in Figure 59(b). In the other special

case, when K is identically zero, the standard model reduces to the

Maxwell model. The equation of motion for the standard linear model is

developed as follows.

Let PI and P: be the forces in springs _ and K, such that

-- P : PI + P: - (BI)

Referring to Figure 59(a), Let Y3 be the displacement of the node

connecting KI and c. The forces Pz and _ are given by

PI = KI (Yl-Y3), and

P: = K (Yl-Y:) -

Differentiating Equation (B2) w.r.t, time t, we get,

0 PI 8y_ Oys

0-i-: KI (at at ) •

The force in the dashpot is,

PI = c (8y3 ay: )
at _t •

From Equations (B4) and (BS),

(B2)

(B3)

(B4)

(BS)
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8y I 1 8Pl Pl By:
- + -- + -- (B6)

8t K_8t c 8t '

i.e., 8y_ By= 1 8P_ PI
= + -- . (B7)

8t 8t K_8t c

From Equation (BI) we have P = PI + P=- therefore,

_P 8P1 8P: (BS)
8t 8t 8t "

Hence Equation (B7) becomes,

8y I By= 1 8P 8P= I

at at = _ [(T_ - _- ) + _ (P-P=)]" (B9)

9

,f

Substituting for P= and __SP=from Equation (B3), we obtain,
8t

8y I By= I 8 P _Yl By= I

8t _-t = K_ [ _-t - K(_ 8t )] + _ [P - K(y_-y:)].
(BIO_

Rearranging,

1 8P P 8y By: K K

K18--t + _ : (_ 8t ) [I + _I ] + _ (Yl- Y=) "_ (BII)

This is the equation for the general linear solid model. In the limit

when K_ approaches infinity, the standard linear solid model becomes

the Kelvin-Voight model as shown in Figure59 (b). Taking the limit of

Equation (Bll) as KI approaches infinity, we get

8y 8y

P : c (_-_ 8t ) + K (y,-y=). (B12)
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(a) Standard Linear Model (b) Kelv_n-Voight
Model

P

141

C

(¢) Maxwell Model

Figure 59. Visccelast/c Mc_els
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VIII. IMPROVEMENTS IN DAMPING MEASUREMENTS

v

In this chapter some improvements that have been considered in making

accurate damping measurements are discussed. Since our main aim is to measure

the damping of the graphite epoxy material, the damping from the supports of

the specimen and other damping, such as that from the connecting cables and

surrounding air are to be avoided. As discussed in the previous chapters, the

best way to avoid damping from supports is to use a free-free support

condition for the beam and excite it at its center through an impedance head

mounted on a shaker. The input force signal to the beam and the output

acceleration signal from it are fed through two charge amplifiers to the Dual

Channel Signal Analyzer_ Then the frequency response either iner_ance A/F,

mobility V/F or receptance Y/F is obtained.
r

Preliminary Check of the Measured Results

The accuracy of the measured results may be evaluated from an observation

of the frequency response curve and the measured resonance frequency by

.comparing them with the values obtained by theoretical analysis.
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V

The Shape of Frequency Response Curve

v

V

,/

A mathematical analysis is described herein which would help in

predicting the frequency response curve for simple beams studied (the beams

without joints).

For a simple beam with material and air damping as mentioned above, its

displacement y can be obtained by superposition of displacements Yi

corresponding to its infinite normal modes of vibration Xi(x ).

00 m

y(x,t) = Z Yi = Z _i(t) X i(x) (8.1)
i =0 i =0

where normalized displacement function [121, 122]

Xo(X) = I (rigid-body mode) (8.2)
_/I

and

I _i Xi Xi )'i
Xi(x) = _/T [(c°shi-x + c°s-lx) - ci(sinh-T x + sin--TX)] --

cosh_ i
- c°s)'i) "_ (8.3)

(i = 1,2,3 ...m a i : sinh;_ i sin>,l

are the solutions for the differential equation (8.4) with boundary conditions

as given in Eq. (8.5).

ET84Y + .AS=Y
-Sx 4 r 8t 2 = 0 (8.4)

8=Yl =a-tzIx__o : o8x 2 8x _ I x=l

(8.5)

a_Lz =0
8x 3 x=O = ax 3 Ix=l
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According to W.E. Baker et al [123], for a beam with material and air

damping and with small amplitude vibration, its differential equation of

motion for free vibration analysis is

El_ +#El_ +_ _t+ _A_-ZZ: 0 (8.6)8x 4 8x _8t r _)t _

Where the meaning of /_ can be found from Eq. (5.15) of this report. From Eqs.

(8.1) and (8.3), X i(x) can be separated from Eq. (8.6) and the differential

equation for the time function _i(t) (i#0) is obtained.

_i + 2ai #i + wi #i = 0 (i#0) (8.7)

where

: _ El (8.8)wi: ( )_--
#A

: c (8.9)
2ai : wi#E + #A_

By using the principle that the total virtual work should be zero, an equation

similar to Eq. (8.7) can be written for a free-free beam with damping,

supporting and exciting conditions as mentioned above.

. , Fo (1)coswt giX i(I) (i#O)_i+ 2_i+i+ _i_i:_ xi + ; (8.10)

where FoCOSWt is the exciting force and g is the acceleration due to gravity.

However, for the rigid-body mode, the differential equation is

8:yo 8yo

#AI _ = FoCOS_t - C 8-T-
_t

because there is no elastic force applied on the beam.

(8.11)

From Eq. (8.11) the

differential equation for _o is written as

Fo Fo

_o + a_ =-- coswt =-
pAl Xo #A_/I

cos_t, (8.12)
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where

: C (8.13)
a #AI "

According to S. Timoshenko et al [122], the solution with the initial

conditions

ylt:O : 0

aYI =o
8t t=O

(8.14)

for Eqs. (8.12) and (8.10) are respectively as follows

Fo e-at
_o(t) : _ [- _o_t+._/_ +

w_Z(W2 +a2) w +a
], (8.15)

V

where

and

+i (t) : %ixi (½)[i "i_ __ e-ait

_i Wd

FoX i (1)e-e_t
2 2 2 2

pA[(_i-_) +(2_i_1]

_#=tan-Z (a),

7i :tan -1 (_) (i#O),

2_iw
8i= tan-Z ( C :)(i#O),

w i -_

2

_d : _(w:i-ai) (ifo).

cos(wdt-_/i) ] +
FoXi (1)cos (wt-Si)

2 _W2 :#A_/[(wi ) + (2ei'_):]

2 2 (2'.

[(_i-w )coswdt + (w:i+w:lL-Zsin_dt] (i_O) (8.16)
wd

"" (8.17)

(8.1_)

(8.15)

(8.20)



,},

(I)= 0 (i=2,4.6,...m), for the center of the beam, the displacementSince Xi

and the steady-state displacement of the above beam are as follows

00

i=I,3,5

and

2 1
Fo cos(_t+_)+ Z {_IXi( )+Y(l't) = pAl wV(w:+a:) i=I,3,5

FoX=i(I) cos (_t-8 i )

:_ j): ]} (8.22)pA_[ (wi + (2aiw)=

Where the first term is the displacement for the rigid-body mode due to the

exciting force, and after the summation sign the first term is the static

displacement due to gravity and support, and the last term is the steady-state

displacement due to the exciting force.

The corresponding velocity and acceleration at the center of the beam are

written as

2

8 y(1,t ) Fo isin((Jt+_)__ _ IXi(1)wsin((_t-Si )
2 2 2 -_

0--t : p-A-T L/( :+ a:) i:I,3,5... _/[(wi-_ ),+(2eiw ) ]} (8.23)

0Y2 : _ (J a:+ )

O0

cos(_t+_)- Z:1 3,5
l I Do.

: 1):1Xi ( cos (wt-'0 i )

: 2

v[(_i-_)+ (2_i_1']}(8"241

By expressing Eqs. (8.23) and (8.24) in the complex form we have

a--t : _ +a2)

2

IXi(1)W e-JSi

_=I,3 5,..._/[(wi-w2):2 + (2_iw):]} ej(wt-_)
(8.25)

02 Fo "weJ_ 22 y(½, t)= )
,½m IX i( )w: e-J(gi

, 2 _ :): 2 } ejWt3,5 J[( i + ]
(8.26)

or
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1 Ao
j ({at - _ + tan- _-_o)Fo : :

y(½,t) - ¢(Ao + Bo)ea-_ T_T
Ao

: FoW : : j(_t + tan -I _-_)

--T Y(,t) = pA--_(Ao + Bo)e
8t

m IX i( )w c°sSi

m IX i ( )w sin8 i

Bo: _ + I ..v[(J _ _ (z__')_]V((_=+a =) i=l, 3,5" i - w ) +

(8.27)

(8.28)

(8.z9)

(8.3o)

or

6/

Ao - 2 2

. ixi()w (_i- w )

! - _ 2)2I'=,3,5... (wi-w + (2aiw)

m IXi (1)w(Zai a')

a +! 2 : : -------TT=Bo : :-----T =I,3 5 (_i - w ) + (2_i_)l_ +a , ''"

Then the magnitude of the frequency response,

respectively as follows:

St

and

2

I_oI : _o-_t=y( ,t)I: _v(A:o+

where

M=pAI

(8.31)

(8.32)

the mobility and inertance are

(8.33)

(8.34)

(8.35)



Figs. 60 and 61 respectively show the theoretical frequency response

(mobility and inertance) of a graphite epoxy beam with the following

parameters.

1 = 2.54x10-1m (length of beam)

b = 2.84xlO-2m (width of beam)

h = 2.65xlO-3m (thickness of beam)

E = 1.2x1011 Pa (storage modulus of elasticity for graphite epoxy)

3 3

p = 1.6xi0 kg/m (density of graphite epoxy)

= 0.001 (damping ratio of beam)

a = w1_-

a i = wig (i_O)

When plotting these frequency response curves from Eqs. (8.33) and (8.34),

only four leading odd modes of vibration were used in Eqs. (8.31) and (8.32).

By comparing the experimental frequency response of the mobility and

inertance shown in Figs. 62 and 63 with the theoretical ones shown in Figs. 60

and 61 respectively, it is possible to estimate the accuracy of the measured

results. Otherwise, if there are significant variations betw'een the two

curves, it is better to check the problem before the next measurements are

made.

!
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v The Skeleton of Mobility Plot [25]

For a structure more complicated than a simple beam, it is difficult to

predict its frequency response. Therefore, the utility of observing the shape

of the frequency response curve is limited. Another technique used for

checking the measured results is called skeleton check and is shown in Fig.

62. It is suitable for any structure with free-free support condition, and it

should be used for the frequency response curves which are plotted in

logarithmic scales. If there is a tendency that the _6dB/Oct straight lines

go down with an increase in frequency, the measured results may be all right.

We can find our results to agree very well with this method of checking.

The Accuracy of the Resonance Frequency

For a lightly damped simple beam it is easy to predict_its natural

frequency. Hence, a good agreement of the measured resonance frequencies with

the predicted natural frequencies also indicates a good measurement.

Obviously if the measured resonance frequencies are found to be lower than the

calculated ones there must be a load effecting the beam vibration.

v

Improving the Mountinq of Beams

It is found that the mounting of the beam specimens under test play an

important role in damping measurements. Hence time and effort has been spent

for selecting the best mounting method. The advantage of supporting the beam

at its center is that it prevents excessive damping from the supports as in

L_
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the case of a cantilevered or a simply supported beam. Unfortunately, the

disadvantage'for a center supported beam is that the center point is the

antinode of the odd mode vibration of the beam, and that a load at the

antinode will produce a notable impact. If the load is a mass, it will only

lower the resonance frequencies; if it is a resistance, it will not only lower

the resonance frequencies but also increase the damping [124].

After extensive trials with wax, stud, glue and tape, the double sided

adhesive thin tape has been chosen for mounting the specimens. Wax is not

ideal, because a mounting with less wax tends to be too loose while the

specimen is vibrating, and if too much wax is used, the measured damping ratio

will be very high. Although the stud mounting is stable enough, it tends to

decrease the resonance frequencies and increase the damping ratio value

significantly. Glue mounting is also stable, but the surface area of contact

between the beam and the impedance head is often too large, hence the measured

damping ratio value will tend to be higher than that of the specimen under

test.

In order to get a rather stable and minimally damped support for making

damping measurements, a narrow piece of carpet tape about I mm in width was

stuck at the center of the beam perpendicular to the length of the beam.

Since the tape is very thin, it was necessary to keep the beam balanced. This

was done by ensuring that the gap between the beam and the impedance head on

either side of the tape mounting is the same.

Selection of Excitation

There are several kinds of signals generated by the B&K Dual Channel

Signal Analyzer Type 2032. Pseudo-random noise is a self-windowing function,

and it is often used as the excitation in measuring the frequency response of
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fairly linear systems, particularly for lightly damped resonances, because the

self-windowing functions generateno leakage while obtaining the Fast Fourier

Transform. Without a self-windowing excitation, even with a Hanning Window,

energy could leak from a lightly damped resonance into adjacent spectrum

lines. The resulting spectrum would show greater damping than it actually

exists. Furthermore, pseudo-random noise gives the frequency response much

faster when compared to the random noise excitation. Because the latter is a

true noise, it must be averaged for several time records before an accurate

frequency response can be determined [125].

Another aspect of the excitation is its amplitude. The rule of thumb for

selecting a suitable amplitude is that the excitation must be strong enough to

get the needed signal to noise ratio, and must not be so strong as to damage

the stability of mounting and linearity of the system.

v Elimination of Noise in Measurements

Electrical Noise

Electrical noise may be eliminated by properly grounding the measuring

instruments according to their specifications. It is necessary to point out

that the housing of the impedance head should be isolated from the grounded

shaker with a specially made electrically isolated stud and a mica washer.

There is often an electrical noise at the center frequency of the

frequency span in the frequency response measurements made by B & K 2032

Analyzer. In order to avoid this type of noise, it is suggested that the

resonance frequency of the specimen be not selected as the center frequency of

zoom measurements.
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Mechanical Noise

= =
v

V

Sometimes vibration coming from the foundation of the shaker very much

effects the measurements. A piece of soft foam may be inserted beneath the

shaker. This acts as a cushion and was found to be quite helpful in

preventing such disturbance. But in the case of measurements taken inside a

vacuum chamber, since the foam is often full of dust which is harmful for the

vacuum pump, a vibration isolater with very low resonance frequency (just a

few Hertz) was used in place of soft foam.

Another problem is the force or vibration coming from the cables

connected to the impedance head. Compared with the weight of the specimen,

the disturbance of the cables is rather heavy, although the cables are soft

and light. Keeping the cables as straight as possible to prevent them from

bending and putting the cables on a cushion to damp out their vibration may

solve this problem. But when working inside the vacuum chamber, it was found

difficult to do so, because the space in the bell jar was very_-restricted.

Therefore, it is suggested that softer and lighter cables be used while making
r

i

measurements in a vacuum chamber.

v Further Check of the Measured Results

After the above problems having been considered, the accuracy of the

measured results improved to a great extent. In order to make sure that the

experimental results were reliable, further check was always conducted during

the measurement procedure. The signal to noise ratio and coherence between

the two channels were observed for each measurement. The optimum requirements

were found to be a signal to noise ratio of over 20dB, a coherence of over
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0.91, and a very small difference between the frequency responses H2 and H1

measured by the B&K Analyzer. At the same {_me, the repeatability of several

successive results was also observed. It was found that as the signal to

noise ratio, coherence and the value of the damping ratio decreased, the

difference between H2 and HI and the resonance frequency increased quickly.

The reason was most often found to be related to the mounting of the beam

which probably got slack.

Experimental Study of Damping of Jointed Specimens

This section contains the results of experiments conducted on beam type

specimens with and without joints. The joints studied herein were made from

pieces of graphite epoxy beam type specimens. Damping measurements were made

on the following type of jointed specimens. I. Bolted Single Lap Joint (Fig.

64), 2. Bonded Double Lap Joint (Fig. 65), 3. Bolted Double Lap Joint (Fig.

66), 4. Bonded-Bolted Double Lap Joint (Fig. 66), 5. Bonded Scarf Joint

(Fig. 67), and 6. Bolted Butt Joint (Fig. 68). The measured da]_ping ratios

for these jointed specimens are shown in Table 9. The damping ratio value of

specimens without joints was also measured under identical conditions when

measurements were made on each of the jointed specimens. All the values of

damping ratio reported in Table 9 were obtained after conducting about ten

trial runs on each specimen. This was done to ensure repeatability of the

results. Also each time a measurement was made it was checked for accuracy

using the methods described earlier.

The following conclusions may be drawn from the summary of results

presented in Table 9.
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The damping ratio of a graphite epoxy beam without joints is of the order

of 0.05% to 0.06%. Compared to the earlier results listed in Tables 3,4 and

7, the latest data are about one half of the previous ones. According to

Plunkett [128], if measurements are taken on similar specimens, at the same

stress level and by comparable methods, usually the lowest reported value of

damping is most likely to be closer to the correct value. The actual material

damping will probably be lower than any of the values that are measured.

Also, there might have been some little differences in the material used for

making the specimens whose damping values are reported in Tables 3,4 and 7 and

those values reported in Table 9.

The damping ratio value of jointed beams is found to be higher than that

of the specimens without joints. This conclusion also differs from the

earlier one described in pages 142 and 149.

It appears that the damping ratio values tend to increase when the beams

are bolted together than when they are just bonded together. The damping

ratio value for a double lap joint is higher than that of a single lap joint.

Lastly the difference in the damping ratio values measured under

atmospheric conditions and in a vacuum (O.Imm Hg) seems to be not very

significant. The possible reason is that the damping measurements might have

been affected by the connecting cables used for the impedance head.
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Damping

'Table 9

of Various Graphite Epoxy Beams

Beam

No. Type & Size

Mode

No.

Resonance Frequency Damping Ratio

Atmospheric 0.1 mm Hg Atmospheric 0.I mm Hg

Without Joints
254x28.4x2.65mm

1 352Hz 0.06%
356Hz 357Hz 0.05%

3 1871Hz 0.04%

0.04%

Without Joints
2 200x15x2.Smm

1 472Hz 0.06%

V

3

Bolted Single
Lap Joint
254x28.4mm
Fig. 64

1 343Hz 0.11%
344Hz 344Hz 0.11%

3 1618Hz 0.12%

0.10%

i.
Bonded Double
Lap Joint
190x15mm,
Fig. 65

1 1028Hz 0.09%

5

Bolted Double

Lap Joint
300xl5mm,
Fig. 66

1 1020Hz 0.11%

Bonded-Bolted
Double Lap Joint
300xl5mm,
Fig. 66

1 1021Hz 0.22%

;,.,;
lr

Bonded Scarf
Joint
200x15x2.5mm
Fig. 67

i 509Hz 0.16%

Bolted Butt
Joint
254x28.4mm

Fig. 68

1 222 0.51%

3 1259 0.11%
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